
Friend OS Developer’s Manual

Volume 1, Programmer’s manual

© 2016-2021 Friend Software Corporation. All rights reserved.

Last update: September, 2021

Table of Contents

Table of Contents 2

Introduction 7

A new operating system? 8

About undocumented code 8

Notes about this document 8

Authors 8

System layout 9

Security Model and components 9

Security Model implementation 9

System:Libraries/ 10

System:Modules/ 11

System:Devices/ 11

System:Devices/DOSDrivers/ 11

System:Documentation/ 12

System:Functions/ 12

System:Settings/ 12

System:Tools/ 12

System:Software/ 13

The Friend Workspace 14

Friend Workspace core applications for development 14

Friend Shell 15

Friend Create 15

Friend Libraries 16

system.library 17

Using devices 17

mount – mount user device 17

unmount – unmount user device 18

list – return list of mounted devices. 18

listsys – return list of available filesystems. 18

refresh – refresh FC device file structure (read settings from DB) 19

share – share device with other users across one server 19

2/96

Handling files 20
read – read a file from disk 20

write - writes to a file on disk 20

copy - copy a file to another 21

upload - uploads files to the Friend system 21

expose - create a public permanent link to a file 21

conceal - make a publicly available file private 22

Friend Modules 23

System.module 23

Administration commands 23

Calls available to users 27

Developing your own modules 28

Programming modules in PHP 28

Creating app modules 29

The PHP database object 30

The PHP SQLDatabase class 30

The PHP Door class 31
Methods in the Door class 32

The PHP File class 32
Methods in the File class 32

Programming in the Friend Workspace 34

Friend Applications 34

The Config.conf file 34

The Application object 35

A very simple Friend application example 36

Communication between applications 37

Callbacks when messaging 38

Keydata storage for applications 38

Methods in the Application object 39

Callback functions in the Application object 40

Attributes in the Application object 40

Localization 40

Translations from path 41

Sharing application data between users 41

Shared Application Session class 41
SAS.invite(users, inviteMessage, callback) 41

3/96

SAS.remove(users, removeMessage, callback) 42

SAS.getUsers(callback) 42

SAS.send(event, username) 42

SAS.on(event, handler) 43

SAS.off(event) 43

SAS.close() 43

Event overview 43
Events for host mode 43

Events for client mode: 43

Application specific events 43

Shared Application Session example app: Whiteboard 44

Helper functions 45

Storage functions 45

Encoding and decoding of data 45

DOM helper functions 45

Localization functions 46

String manipulation functions 47

Dialog functions 47

The View class 48

View groups 49
View group properties 49

Methods in the View class 50

Global functions related to view 51

Using frameworks 51

The Widget class 52

Methods in the Widget class 53

The Screen class 53

Methods in the Screen class 54

File dialogs 54

The File Class 55

Friend paths 56

Methods in the File class 56

Public variables in the File class 57

The Door Class 57

The Module Class 58

Methods in the Module class 58

The Library Class 58

4/96

Methods in the Library class 59

FriendNetwork 59

Principle 59

FriendNetwork API 60
FriendNetwork.host(hostName [, password]) 60

FriendNetwork.setPassword(hostKey, password) 61

FriendNetwork.dispose(hostKey) 61

FriendNetwork.connect(hostName) 61

FriendNetwork.sendCredentials(key, password) 62

FriendNetwork.disconnect(key) 63

FriendNetwork.send(key, data) 63

FriendNetwork.closeApplication() 63

FriendNetwork.status() 63

Errors 64

Programming GUIs 64

How to write templates 65
A simple layout with a bottom bar 65

The horizontal tab layout 66

Tall tabs, centered on screen 67

A double column layout 67

Triple column layout using nesting 68

Vertical layouts 68

Lists 69

A list of classes and their description 69

Mouse pointers 70

Absolutely positioned elements 71

Pulldown menus 71
A matter of scope 72

Tabs 73

Tree views 74

Directory views 74

Programming GUIs using the FUI framework 75

Packaging and submitting to the repository 75

The Tree engine 76

The tree structure 76

The items 76
A Tree item is a JavaScript object with five functions 77

5/96

The processes 78
A process is a Javascript object, with 3 functions 79

The procedure 80

Once the top of the pile is reached 80

Once the item is reached 80

Rendering 80

At work 81

Applications 81

Tree Game engine 81
The game objects 84

The game processes 84

In-game screen sharing 84

Programming the Friend Core 84

Getting started with Friend Core and HTTP/S 85

DOS Structures 87

Example of a file structure 88

Example of a directory structure 88

Friend Core development 89

Authentication modules 89

Using DOS drivers 92

The Website DOS driver 92

The Server DOS driver 97

Terminology (alphabetized) 98

6/96

Introduction

Welcome to this Developer’s Manual for the Friend OS. We have worked hard to
create a platform that may inspire you and hopefully encourage you to take your
computer(s) and the internet to the next level. At first sight, Friend may look like
any other desktop environment and web server. But once you start digging deeper,
you will find a new and unique architecture that simplifies how you connect to and
process data over a network.

Friend inherits from many operating systems and servers that have been in use
over the last 40 years. On the server side, you will find aspects of Apache and
Nginx. On the OS side, you will find Tripos, Amiga OS and Linux. On the UI side, you
may find aspects that remind you of Android and Tizen. You will realize that Friend
is a departure from the standard Unix philosophy. And that is so - Friend follows the
path that Tripos ventured - a simplified and reorganized take on Unix that works
much better for users and systems with multiple root devices. We believe you will
find that it is very well suited for user interfaces and for abstracting the internet as
a sea of resource islands to be utilized and disposed of.

In this document, we will cover the entire system from A to Z. We will explain how
the system is designed. We will explain each system component. Then we will go
into the various programming languages you can use. We will cover the classes and
functions you might use. And we will give lots of examples. Friend, essentially being
an OS, has components dealing with everything from files to devices. Because of
this, it might be a bit untraditional as an online, web based environment, compared
to what you have been using in the past.

The most untraditional aspect of Friend is that it is implemented using a “operating
system template”. What we mean by that, is that Friend implements the
components of an OS; drivers, libraries and resource management functionality. The
rationale is that you need these structures to write complete computer programs
(and you always did). This is why you will be able to create very powerful and easy
to distribute applications in Friend.

By historical tradition, an operating system consists of four distinct parts of a
dualistic whole. On the bottom layer, you have the kernel. On top of that, you have
the kernel shell. This allows for communication between the kernel and the
outside world. Then you have the desktop shell, which expands into the graphical
user interface. Each part plays a specific role in the system. The kernel abstracts
raw data and manages internal processes and resources. The kernel shell creates a
low level user interface that exposes kernel functionality to a user. The desktop
shell abstracts the kernel shell into objects that can be represented graphically. The
graphical user interface draws the graphical representations of the desktop shell
and implements an interactive toolkit to manipulate the operating system.

7/96

A new operating system?
It is rare for any team of programmers to stumble upon the opportunity to write a
new OS from scratch. While many users would expect a fresh start – a re-think –
when introduced to a new computer interface, in reality, so much could break, or
would have to be re-integrated with existing hardware and infrastructure, that the
re-deployment effort and time-span would discourage many from even attempting
to try it.

A critical architectural design decision was made to strategically and efficiently
"leverage" the stable facilities of the main existing operating systems, kernels, and
browsers, to integrate with our advanced “co-kernel”, Friend Core, or meta-layer, if
you will. We place this layer above these time-tested, established systems. This way
we can utilize them to deliver rapid and broad deployment across most of all
existing computing platforms. Immediately upon launch, this meta OS runs
everywhere on nearly every platform, both legacy and new devices just being
introduced!

We believe that the changes we have made provide a more natural embrace to web
servers and standards, modern extensions to the computing environment such as
voice input and output, VR and AR, IoT, AI, as well as thorough utilization of the
cloud. The Friend OS platform truly and elegantly provides the individual user with
the access and power of a planetary computer! We call that a macro computer.

Friend is the first macro computer operating system that is easily accessible, and
easy to use, for any user with internet access.

About undocumented code
This document covers the API v1 specification. Undocumented function calls and
classes that may be found in the Friend OS source code, may become obsolete and
deprecated without warning. We urge you not to utilize these functions and classes,
as they may render your application unusable in the next system update.

Notes about this document
This manual is a work in progress. Some of what is documented may have
problems. In some cases features may simply not work. But do not see this as a
warning. Friend is ready for serious third party development. So even though this is
a preview, it will still let you unleash your creative potential and learn about how to
develop applications in Friend. Have fun!

Authors
Hogne Titlestad, Thomas Wollburg, Francois Lionet, Paul Lassa, Paweł Stefański.

8/96

System layout
Friend has an operating system template that abstracts information and data
structures in system components of various kinds, depending on kind. Using these
components, Friend OS allows a developer to build rich applications that can access
any type of information or service over a network.

Security Model and components
Friend OS is designed from the ground up for use in the modern enterprise. As
such, it offers the full spectrum of industry standard security features and
components to fit seamlessly into existing IT infrastructures. It is designed to
protect and preserve critical data, properties, and communications of commercial
entities and individual users.

Friend Core can run using SSL/TLS for HTTP and websocket connections. All
production level environments should use SSL at all times. Friend Core requires
authentication to access any core logic. Additionally, it is mindful of user levels and
permission setups.

By using sandboxed iframes and worker threads, Friend puts up a boundary
between each Javascript application and the core system. This way, each
application is forced to adhere to its security setup, enforced from the time it is
installed in the Friend Workspace. Friend uses security subdomains to sandbox
Javascript applications, and string based application-to-application messaging for
accessing the Friend API. This way, no application can share any Javascript memory
structure, preventing offensive applications from escaping their sandbox.

Friend supports third party identification providers. More info about that can be
found in our Administration guide .

Security Model implementation
As stated above, security is enforced by allocating different subdomains to the
iFrames containing the applications, thus preventing any attempt of unauthorized
direct communication between them.

The system in based on a number of pre-allocated subdomains added to the domain
of the server, taken from a pool of subdomain names.

1. A Friend server is configured to handle a list of subdomains. For a distant
server, a wildcard entry is added to the DNS list (like #.intranet.Friend
OS.cloud), On a local Linux machine, the /etc/'host' file contains the list of
subdomains ('friend1.locahost', 'friend2.locahost' up to the last one)

2. When an application is launched, Friend Workspace looks in his map of
available subdomains and finds a free subdomain.

3. The free subdomain is then assigned to the new application. It will run in for
example in 'friend1.intranet.Friend OS.cloud'

9/96

4. A new application will be assigned a different domain from the pool, for
example 'friend2.intranet.Friend OS.cloud), and it will impossible for it to
communicate directly with the first application.

5. Any communication between application will go through Friend by the mean
of messages re-routing.

6. As a default, an application can communicate with other instance of itself, as
they are allocated the same subdomain (the mapping is based on the name
of the application). For example, one session of a word processor like 'Author'
can send and receive message with another instance of itself without any
further procedure.

7. To establish communication be two different applications, the first application
must ask the permission to the second application by sending a
'communication request' in the mean of a message, the only one allowed at
the time, to which the second application respond 'yes' or 'no', or do not
respond at all.

8. If the second application responds 'yes', then the channel is open, and both
applications can communicate.

9. Due to the nature of Friend Network, applications on different machines and
even different servers will be able to communicate in the future, without any
extra work for the programmer.

10.Each subdomain is freed when the last instance of an application is closed,
and becomes available for new ones.

Friend servers will allocate a large number of subdomains. For example, a hundred
subdomains will allow a hundred different applications to run on a single Friend
machine with added security.
As a safety measure, if this number is reached, the default server's domain is
assigned to new applications above. The applications will be less sandboxed but will
always run. An warning on the user's Workspace will indicate the fact that this
application is running in 'lower-but-still-safe'' mode.

This security system is customizable, and defined in the cfg.ini configuration file of
the Friend server. (see the Administrator Guide for more information)

System:Libraries/
System libraries are collections of functions that are executed inside of Friend Core,
the Friend kernel. This allows them to execute with optimal speed without having to
initialize runtime environments or reprocess data that is already prepared in the
core.

The system.library can be reached using many programming languages, like PHP
and Javascript. It allows you as a developer to take advantage of the many fast and
powerful functionalities inside of Friend Core in your own applications.

Other libraries will be documented in a revised version of this manual.

10/96

System:Modules/
System modules abstract functionality that executes outside of the Friend Core.
They can be written in several languages and will execute on the server. By using a
module, Friend Core can be extended with any scripting language, as long as it
returns data formatted in adherence with the Friend Core module specification.

Friend Core comes with several modules. But the two modules you will be using the
most are the system module and the files module. These cover the most important
Friend functionality that you would use in a Friend application.

System:Devices/
The devices directory of the System volume is designated for device drivers like
DOS drivers, printers, network nodes and hardware devices.

System:Devices/DOSDrivers/
DOS drivers are virtual filesystem drivers for Friend Core. A Friend filesystem device
is handled by a DOS driver. The driver handles DOS command calls and paths
directly, and returns data in adherence with the Friend Core DOS driver
specification.

In Friend, a disk volume may be anything. We have designed the data structures
that are found on these disks in a way that they can abstract any kind of data.
Friend supports not only javascript executables on these disks, but also libraries
that relay remote server functionality (please read about the Website DOS driver
elsewhere in this document). This way, a disk may contain several independent
applications that are distributed from remote, trusted infrastructures like cloud
servers or purpose built proprietary servers. This allows you to connect resources
from clouds like AWS (Amazon Web Services) or Azure (Microsoft) to leverage their
versatility.

The DOS driver is one of the most powerful features in Friend. These provide
middleware functionality and package it in a coherent and easy to use interface for
the user. Our open source package contains a couple of DOS drivers to review and
to be taken as blueprint for creating your own drivers. The driver may connect to
any structured or unstructured data source, from filesystems via legacy databases
to whole applications that can be laid out as metadata-rich files and directories.

To illustrate the usefulness of DOS drivers, an example use case would be creating
a driver for your warehouse database. Then easily publish products stored there by
drag and drop to a Wordpress DOS driver that connects to your website and online
store.

11/96

System:Documentation/
The documentation directory contains, among other things, this documentation. It is
the one stop place where you can reach the documentation needed to learn and
understand your Friend system on all levels. When you expand your system with
additional software and upgrades, you will see an increase of documents and
document directories.

Request: If you are unable to find coverage of a particular topic, please submit a
request to: developer@friendos.com, and our team will try to address the gap!

System:Functions/
The functions directory contains Friend DOS functions that can be used to
manipulate your Friend environment. This is also the directory where you can
extend your Friend system with new commands that you have either written
yourself, or third party creations that you have installed.

Friend DOS functions are listed and more fully described in the Friend DOS section.

System:Settings/
This directory contains your system settings. Here you will find the applications that
lets you modify your Friend Workspace. Administrators gets some extra applications
to set up user accounts and do other administrative tasks.

System settings apps are listed and described in the Friend User’s Guide.

System:Tools/
Contains bundled system tools. Here you will find applications that let you monitor
the active state of your system. As you expand and add to the software available in
your Friend system, additional tools may appear here. System tools apps are listed
and described in the Friend User’s Guide.

System:Software/
Contains a categorized directory tree of all your available software. When you install
new software in Friend, this software can be found in the System:Software/
directory.

This directory is similar to the Program Files or Applications directories on other
systems.
Note that while the software appears to be installed in this local directory, it may in
fact reside on some other server (with Friend Core, or on your uncle’s, neighbor’s,
sister’s hairdresser’s computer/server. But, it now has been “enabled” to be run
in your Workspace. Friend enables decentralization of software sources. But each

12/96

user account keeps track and manages its own software authorizations and
application permission settings.

13/96

The Friend Workspace
The client side part of Friend is the Friend Workspace. It is written using HTML, CSS
and Javascript. This makes it available on any platform and operating system as all
meaningful operating systems come with a browser.

The Workspace provides direct access to the Friend Core server and comes with
user, file, access and window management. It has a file manager and several
default applications like Friend Create, our programmers editor, and Friend Shell,
our command line interface.

The Friend Workspace provides a responsive desktop with view/windows, a dock,
widgets, a global menu system and a mount list over available file systems. It also
always gives access to the System volume that provides access to software,
settings, tools and documentation.

Friend Workspace core applications for development
The Friend Workspace comes with a short list of preinstalled applications that can
be used for development. Some of the applications provide an API for other
applications to interact with them. Some are simple tools. Here is a brief overview
of the applications you may use in your development.

Friend Shell
Friend Shell is Friend’s command line interface (CLI). It provides a comprehensive
feature set for important system functionality. It allows a user to browse file
systems, run applications and scripts, etc.

14/96

A CLI is a very useful interface for advanced users. It lets you issue precise
instructions to your computer, and will allow you to automate several tasks. The CLI
is the ultimate tool to get to the lower levels of the operating system. The naked
GUI only gives you a "bird's eye view".

Advanced users are often found using a CLI to supplement their usage of a GUI. A
CLI is expressive, while a GUI is implicit. A typical user usually interacts with the GUI
through its offered default settings, templates, and constrained-selection gadgets.
The advanced user can interact through the CLI with custom expressions from task
to task, with complete freedom of how to use the available facilities.

For more on the CLI and using Friend DOS, please refer to the Friend DOS chapter.

Friend Create
Even though you may choose to utilize your existing programmers toolchain, we do
offer a programmer’s editor right inside of the Friend Workspace. It is called Friend
Create, and is bundled with every Friend OS distribution.

Friend Create is a simple programmers editor, with only the main functionality you
would expect in such a tool. But in addition to being able to handle code and
projects, you may enjoy how it is integrated in the Friend system.

15/96

For more information about Friend Create, please refer to the User’s manual.

Friend Libraries
Libraries are runtime linked collections of executable code that are directly
connected to the Friend Core. As such, they share memory space with Friend Core
and have the best performance of any extendable Friend Core functionality.

In Friend Core, there are six main libraries:

● system.library
● mysql.library
● application.library
● image.library
● properties.library
● z.library

All of these libraries are available to a Friend developer (given the right access
privileges). Some of the library functions are only available to administrators. But
most are available to any user with a valid “sessionId” string.

16/96

system.library
The system.library in Friend OS is the extensible component that handles most of
the logic in Friend Core. When it is extended, or even completely replaced, it can
make Friend Core behave utterly different. Such a scenario might not be too far
fetched, as you customize your Core for a different use. The system.library
establishes the operating system template on the server core. It upgrades operating
system features of the underlying OS (Linux or Windows) to behave like a Friend
system.

Using devices
In Friend Core, devices are units connected to Friend Core using DOS drivers and
DOS handlers. There are a few ways to manipulate these using the device library
calls of the system.library.

mount – mount user device

Mounting devices authenticates and connects DOS driver based disk volumes to
your Friend session. A mounted volume will show up in your mountlist. If it is a
visible volume, it will show up on your Workspace.

Parameters:
devname – name of device which will be used in system, it must be
unique (required)
path – path to a local storage directory. This path will be the root to all files and
directories in the device, if the DOS driver supports this variable (optional)
type – DOS driver type. Every time mount is called FC is trying
to find a suitable DOS driver by using the type parameter.
(optional)

Example call:

http : //friendos.com/system.library/device/mount?sessionid=12345&\
devname=Home&path=/home/user/&type=Local

Result:
stringified json object

On success:
{"response":"successfully mounted"}

On failure:
{"response":<error>}

unmount – unmount user device

Unmounting a device disconnects it from your Friend session. It becomes
unavailable for reading and writing. You will still be able to see it in your mountlist
in the unmounted section. If it had been displayed on the Workspace, unmounting
will remove it from view.

Parameters:
devname – device name which we want to unmount (required)

17/96

Example call:
system.library/device/unmount?sessionid=e92&devname=TEST

Result:
stringified json object

On success:
{"response":"successfully unmounted"}

On failure:
{"response":<error>}

list – return list of mounted devices.

To get a list of all of your mounted devices, you can run the list command. It will
return a JSON string with stringified objects.

Parameters:

Example call:
system.library/device/list?sessionid=e92

Result:
stringified json object

On success:
{"Name","Home","Path":"Documents","FSys":"phpfs","Config":"","Visible":"1″,"Exe

cute":""}, …..

On failure:
{"response":<error>}

listsys – return list of available filesystems.

To get a list of all available file system types, you can run this command.

Parameters:
Example call:

system.library/device/listsys?sessionid=e92

Result:
stringified json object

On success:
{"Filesystems":[{"Name","phpfs"},{"Name": …..},…..]}

On failure:
{"response":<error>}

refresh – refresh FC device file structure (read settings from DB)

All devices in Friend Core are buffered to allow for fast transactions over the
network between your client device and the server. Because of this, database
changes aren’t automatically detected by Friend Core. After a device has been
altered, a refresh command should be issued to the Friend Core server to tell it to
synchronize its buffers with the current state of the database.

Parameters:
devname – device name which will reread configuration from DB

18/96

Example call:
system.library/device/refresh?sessionid=e92&devname=TEST

Result:
stringified json object

On success:
{"response":"device updated"}

Otherwise:
{"response":<error>}

share – share device with other users across one server

All devices managed by Friend Core can be shared with other users. This allows
users to collaborate on the same disk volumes.

Parameters:
– share – share device with another user.
– devname – device name which will be visible for provided user. In current version
device must be mounted.
– username – name of user to who will have access to shared device
Example call:

http://friendos.com/system.library/device/share?
sessionid=12345&devname=Home&username=test_user

Result:
stringified json object

On success:
{"response":"device shared successfully"}

On failure:
{"response":<error>}

Handling files

read – read a file from disk

One of the most often used file commands is the read command.

Parameters:
– path – the Friend path of the file
– mode - rb = read binary, r = read text, rs = read streamed
- offset - offset in the file to start reading from
- bytes - number of bytes to read
- download - indicates to download the file on the user’s machine, value = 0 or 1

Example call:
http://friendos.com/system.library/file/read?

sessionid=12345&path=Home:myfile.txt&mode=rs

Result:
string

On success (read text mode):
ok<!--separate-->Here is the text data.

On success (read binary mode):
Here is the text data.

19/96

On failure (read text mode):
fail

On failure (read binary mode):
null

write - writes to a file on disk

The counterpart of read, writes data to the filesystem

Parameters
– path – the Friend path of the file
– mode - wb = write binary, w = write text
- data - the data to be written

Example call:
http://friendos.com/system.library/file/write?

sessionid=12345&path=Home:myfile.txt&mode=w&data=123456789

Result:
string

On success:
ok<!--separate-->"FileDataStored" : "size_written".

On failure (cannot access the file) :
fail<!--separate-->"Response": "No access to file"

On failure (missing mode parameter) :
fail<!--separate-->"Response": "nmode parameter is missing".

copy - copy a file to another

This function copies a source file to a destination file.

Parameters
– path – the Friend path of the file to copy
– to - the Friend path of the destination

Example call:
http://friendos.com/system.library/file/copy?

sessionid=12345&path=Home:myfile.txt&to=Home:Documents/myfile.txt

Result:
string

On success:
ok<!--separate-->"Response" : "0", "Written": "size_written"

On failure (cannot access the source file) :
fail<!--separate-->"Response": "No access to source"

On failure (missing mode parameter) :
fail<!--separate-->"Response": "No access to destination"

upload - uploads files to the Friend system

This function uploads a list of files from the user’s browser to the Friend filesystem.

Parameters

20/96

Example call:

Result:
string

On success:
ok<!--separate-->"Uploaded files" : "number_of_files_uploaded"

expose - create a public permanent link to a file

If you just want to publicly share one single file in one of your Friend disks, you can
use the expose command to handle this.

Once a file has been exposed, it creates a public link like this:

https://theroot.tree:2048/sharedfile/a322e944b1e4fffa0cd8cdb34da2ff72/
test.jsx

Parameters
– path – the Friend path of the file

Example call:
http://friendos.com/system.library/file/expose?

sessionid=12345&path=Home:myfile.txt

Result:
string

On success:
ok<!--separate-->{"hash":"a522ea44b1e4bffa0cd8cdb34da2ff72","name":"test.jsx" }

On failure (cannot access the source file) :
fail

conceal - make a publicly available file private

If you have made a file public previously, and you want to make it private, you can
conceal it.

Parameters
– path – the Friend path of the file

Example call:
http://friendos.com/system.library/file/conceal?

sessionid=12345&path=Home:myfile.txt

Result:
string

On success:
ok<!--separate-->

On failure (cannot access the source file) :
fail

21/96

22/96

Friend Modules
Modules are the counterpart to Libraries. They work on an identical system of
messages and are independent parts of code that can be written in any available
language supported by the platform (C, PHP, Python etc.). Modules are executed by
Friend Core when called, and do not remain persistent in memory on the server.

Modules are more task oriented than Libraries. Libraries are used for general
functionality like data access and manipulation. Modules are used extensively
throughout applications and indeed the Friend Workspace. In your applications, you
can split logic between server code and client code, where server code is handled
by your modules, and client code is handled by Javascript in the Workspace. Friend
OS makes an intensive use of the modules via internal messaging transmitted
between the Workspace in the browser and the Friend Core in the cloud. All of the
functions that get used by the system are available to the developer.

System.module
The system module contains all the major functions you need to program a Friend
web application. This documentation will list the main calls, grouped by category.

Administration commands

setsetting

Stores data for a Web Application, allowing the retrieval of the application state
between sessions.

Parameters
setting - the name of the settings to set
data - the data to set, can be a JSON string

Returns
ok or fail

This example is extracted from the calendar Web Application, it retrieves the
settings of this application and sets calendar to its value.

var m = new Module('system');
m.onExecuted = function(e, d)
{

if(e == 'ok')
{

RefreshSources();
Application.mode = 'edit';

}
}
m.execute('setsetting', {

setting: 'calendarsources',

23/96

data: Application.sources
});

getsetting

Returns the data set by the 'setsetting' system command.

Parameters
setting - the name of the settings to recover

Returns
the setting as a JSON string as it was set by setsettings

This example is extracted from the calendar Web Application, it retrieves the
settings of this application and sets calendar to its value.

// Get an existing one!
var m = new Module('system');
m.onExecuted = function(e, d)
{

if(e == 'ok')
{

var sources = JSON.parse(d);
var str = '';
sw = 2;
// Refreshed
Application.sources = sources.calendarsources;
if(callback)
{

callback();
}

}
}
m.execute('getsetting', {

setting: 'calendarsources'
});

proxyget

Uses Friend Core as a proxy to communicate with an external system over http or
https.

Parameters
url - the url to connect to
… - more parameters following the url parameter are transmitted to the proxy

and are
dependant on the destination

Returns

the data returned by the receiver, as an XML or JSON string

This example is extracted from the Treeroot code, where it communicates with a
Treeroot server to extract some data:

24/96

var m = new Module('system');
m.onExecuted = function(e, d)
{

if(e == 'ok')
{

var j = JSON.parse(d);
if(j.response == 'ok' && j.data && j.data.length)
{

console.log('Recovery data sent to: ' + j.data);
}
else
{

console.log(j.code + ' : ' + j.reason + ' : ' + j.info);
}
Application.sendMessage({

command: 'recover',
destinationViewId: msg.parentViewId,
data : j

});
}
else
{

console.log('Some error trying to recover account ... ', { e: e,
d: d });
}

}
m.execute('proxyget', {

url: 'https://store.openFriend OS.net/components/register/recover/',
Email: msg.data.username,
Encoding: 'json’

});

getlocale

Returns the locale entries for a Friend resource (an application or a driver).

Parameters
type - DOS drivers is the only value supported in this version of Friend
locale - default locale to revert if the current one is not supported

This example of code is taken from the DiskCatalog Web Application:

// Read our locale
Locale.getLocale(function(data)
{

var m = new Module('system');
m.onExecuted = function(e, d)
{

if(e != 'ok') return;
Locale.importTranslations(d);

}
m.execute('getlocale', {

type: 'DOSDrivers', locale: data.locale
});

});

25/96

languages

Gets a list of all the available locale languages in the system. There are no
parameters.

Return value:
A JSON list of all the available languages.

Example:

var m = new Module('system');
m.onExecuted = function(e, d)
{

if(e != 'ok')
return console.log('Severe error!');

var s = JSON.parse(d);
if(!s.shortNames)

return console.log('Severe error!');
var str = '';
for(var a = 0; a < s.shortNames.length; a++)
{

var cl = s.shortNames[a] == lang ? ' selected="selected"' : '';
str += '<option value="' + s.shortNames[a] + '"' + cl + '>' +
i18n('i18n_locale_' + s.shortNames[a]) + '</option>';

}
ge('languages').innerHTML = str;

}
m.execute('languages');

listuserapplications

Gets all applications registered / activated for the user.

Returns
a JSON encoded string with the installed application path

function getApplications(callback)
{

var m = new Module('system');
m.onExecuted = function(e, d)
{

if(e == 'ok')
{

return callback(JSON.parse(d));
}
callback(false);

}
m.execute('listuserapplications');

}

Calls available to users
tinyurl

26/96

Creates a new url that can be used to simplify complex urls in the Friend system.
For example, public files have a long url with url variables. By using the tinyurl call,
you can simplify this complex url into eight alphanumeric characters.

Parameters
source - url string
expire - boolean, 1 or nothing

Returns
A return code, “ok” or “fail”, and then a JSON explaining the response. If the
response is positive, the JSON response is:

{"response":"url successfully created","hash":"3AB051DE"}

Example:

var m = new Module("system");
m.onExecuted = function(e, d)
{

if(e == "ok") console.log(JSON.parse(d));
}
m.execute("tinyurl", { source: "http : //mysite.com/webclient/index.html " });

Developing your own modules
You can create a module for your own needs in any language you want, as long as
you implement the entry functions and the messaging system. We currently use
modules written in C, PHP and Python.

Programming modules in PHP
To develop PHP modules, you need to have access to the Friend Core. If you do not
have this access, please refer to the Administrator’s Guide and set up your own
Friend Core server. Friend Software Corporation offers development servers for
Friend developers. Please go to https://Friend OS.cloud for more information.

If you are a PHP developer, you will be pleased to find that we offer PHP support
using a small PHP runtime. Include this file in your code so that you can receive
variables from Friend Core. A simple module looks like this:

<?php

// Get access to the logging object
global $Logger, $args;

// Include the friend runtime
require_once("php/friend.php");

// Add something in the log file located in build/log.txt
$Logger->log("We are giving a response.");

// Give a response to Friend Core!
if($args->command == "hello")

27/96

{
die("ok<!--separate-->{\"response\":\"hello world\"}");

}
die("fail<!--separate-->{\"response\":\"no known command\"}");

?>

Modules are called by Friend Core when an event is fired. This event could be
triggered from the Friend Workspace, another module or another network event.

When developing modules, you store the module file in:

build/modules/mymodule/module.php

Modules are called from Javascript like this:

// Execute our "hello" command
var m = new Module('mymodule');
m.onExecuted = function(e, d)
{

if(e == "ok") console.log(d);
else console.log("Failed");

}
m.execute('hello');

Creating app modules
App modules are modules that recide inside your application folder structure. These
modules use the system module as an access point. Your module entry point is
“module.php” inside a “Module/” or “module/” folder - inside your app folder root
level:

myfriendapp/module/module.php

OR

myfriendapp/Module/module.php

For aesthetic reasons you may use both Module/ and module/ - depending on the
layout choices of your other app folders.

You may call your app module through the system module this way:

let m = new Module('system');
m.onExecuted = function(returnCode, returnData)
{
 // here comes your app logic
}
m.execute('appmodule', {
 appName: 'myfriendapp',
 command: 'somecommand'
});

28/96

Example of a module.php implementation:

<?php

// This is all!
if($args->args->command == ‘somecommand’)
{
 die(‘We allways respond to some command!’);
}
die(‘We do not respond to any command!’);

?>

The PHP database object
When writing PHP modules, we have provided you with a convenient database
object that you can use to access your database. The database object can access
both Friend Core’s own SQL database, as well as any other SQL database that is
available over the network.

Example PHP code:

<?php

// Just list out some cars from a database
$total = 0.0;
if($rows = $SqlDatabase->FetchObjects("SELECT * FROM `Cars`"))
{

foreach($rows as $row)
{

$total += $row->Price;
}

}
echo $total . " is the price.";

?>

The PHP SQLDatabase class
Open($host, $user, $pass)
Opens up a database connection to a host. All variables are strings. Host is either ip
address and port, or host and port. Example:

<?php

$r = new SqlDatabase();
$r->Open("myhost.domain.com:3306", "username", "password") or die("trying…"
);
$r->Close();

?>

Close()

29/96

Closes a database connection.

SelectDatabase($database)
Selects a database on the database server to use. The database variable is a string.

Query($query)
Executes an SQL query on the database. The syntax is MySQL.

FetchArray($query)
Fetches a two dimensional array of rows using a query.

FetchRow($query)
Fetches a single array of a row using a query.

FetchObjects($query)
Fetches an array of objects using a query.

FetchObject($query)
Fetches a single object using a query.

Flush()
Clears cache of the SqlDatabase and removes the last queries.

For more information about the database functions, please consider reviewing the
source code of the SqlDatabase class.

The PHP Door class
The Door class is Friend’s way to abstract disk volumes in PHP. The Door class can
instantiate and abstract any mounted disk volume that is found on a Friend Core
server. Each DOS driver that is written in PHP inherits from this base class. The Door
class may be used where the File class is insufficient.

<?php
$door = new Door("Home:");
$door->createDirectory("My Photos", "Home:Documents/");
?>

Methods in the Door class

Door($path, $authcontext, $authdata)
When instantiating a Door object, you can pass $path, $authcontext and $authdata
as optional arguments, which will effectively call SetAuthContext() on the object as
it is instantiated.

SetAuthContext($context, $data)
Sets the authentication mechanism for the door object - which will direct all file
operations on behalf of this user. The allows contexts are:

· sessionid - the session hash of a user session

30/96

· authid - the session hash of a user application session
· servertoken - the user’s server token.

GetAuthContextObject()
Returns the current authentication mechanism as an object with Key and Data
attributes.

createDirectory($dirname, $path)
Creates a directory under the specified path. The path must be a Friend path.

putFile($path, $file)
Copies a file to a Friend path. The $file is file binary data. If unsuccessful, the
method will return false. If successful, it will return true.

getFile($path)
Returns a File object that has been loaded with a valid Friend path. If the path is
invalid, the method will return false.

dir($path)
Returns a directory listing in JSON format from a valid Friend path. If the path was
invalid, the method returns false.

The PHP File class
The PHP File class abstracts files in Friend Core across DOS drivers. It is your unified
interface to access files in Friend using PHP.

Methods in the File class

File($path)
The constructor expects a valid Friend file path. Returns a File object.

SetAuthContext($context, $data)
Sets the authentication mechanism for the file object - which will direct all file
operations on behalf of this user. The allows contexts are:

· sessionid - the session hash of a user session
· authid - the session hash of a user application session
· servertoken - the user’s server token.

GetAuthContextObject()
Returns the current authentication mechanism as an object with Key and Data
attributes.

GetContent()
Returns the content of a loaded File object. The data is expected to be in binary
format.

SetContent($data)
Sets content on a File object. The data is expected to be in binary format.

31/96

Load($path)
Loads a file object by path.

Save($content)
Saves a File to a Friend disk volume. The file needs a valid path. If the $content
variable is passed, it will be used instead of the existing data available in the object.
In other words, any data having been set with File::SetContent will be ignored. If the
$content variable is not passed, the existing content that is buffered in the File
object will be saved to disk.

Example:

<?php
// Save a file
$f = new File("Home:Testing.txt");
$f->SetContent("Hello world!");
$f->Save();

// Load
$o = new File("Home:Testing.txt");
$o->Load();
echo $o->GetContent();
?>

32/96

Programming in the Friend Workspace
Most developers using the Friend OS will focus their development efforts using
Javascript and the Friend Workspace APIs. Friend offers developers the option of
doing "backendless programming". This means that the needs or requirements of a
typical developer are covered using the client side APIs available in the Workspace.

Friend Applications
Friend Applications are usually written in Javascript, the programming language
supported natively by your web browser or browser technology. They use the
Friend javascript classes and helper functions as a foundation and extend on
these to build fully working applications.

As Friend follows an operating system template, each application is sensitive to
things like localization, permissions and Friend file structures. This chapter will go
through some of these things, and how they relate to a Friend application.

The Config.conf file

When starting out writing a Friend application that is prepared for system wide
installation, you must create a config file. This file is called Config.conf, and is
placed inside your application directory (i.e. Progdir:).

Here is an example file:

{
"Name": "My Application",
"API": "v1",
"Version": "0.1",
"Author": "Friend Software Labs",
"Category": "Demonstration",
"Init": "Scripts/my_application.js",
"E-mail": "developer@Friend OS.cloud",
"MimeTypes": { "mapl": "open %f" },
"Description": "A sample application configuration file...",
"Permissions": [

"Door Local",
"Module System",
"Module Files"

]
}

This application indicates to Friend where its initial javascript file is located. In
this example, the “my_application” javascript file is located in the “Scripts/”
directory. This file is the one that is read first when executing the application (it is a
.js file, not a .jsx - as Friend applications that are installed system wide do not use
the .jsx suffix). Then it adds which permissions are required. The category

33/96

determines in which software directory the application will be found in your system.
The other attributes are fairly obvious. Mime-types are default file formats handled
by the application, together with the command to open them when double clicking
on such a file. API v1 tells you that this application is using the first API available
for interfacing with Friend. It’s also the API that this documentation is describing.

The Application object
Every application in Friend has an Application object. The Application object in a
Friend application is the most important part of the application. It is generated
automatically by the Friend Workspace environment when your application is first
executed.

The Application object allows your program to communicate with the Workspace object
as well as the application's sub components. Because of this, it is very important to
learn about the various methods available in the object.

The Application object is generated when you are running a Friend application. This
happens internally in the Friend Workspace. Because of this, you never have to declare
this object. It's already there when you start out, and you will extend it and add your
own methods and properties to it.

The most important method in the Application object is run(). This function is triggered
when your application assets are finished loading and it is safe to start executing your
application. It takes one argument, msg, which gets arguments and other variables
from the Workspace itself (for example command line arguments).

Friend Workspace works by using sandboxed application containers in the form of
iframes. When you are running a Friend application, it starts by creating an initial
iframe where your initial Friend Javascript is executed. Once you open up new screens
and view windows, they also get iframes. Each of these view or screen iframes are
initialized with standard Application objects and the Friend API. These Application
objects can message each other using the postMessage Javascript function. This is how
a Friend Workspace application works.

Each Friend application is decentralized into multiple Application objects. This is very
powerful, and allows for applications that can work concurrently across multiple clients
by transparently replacing postMessage with websockets or http calls.

A very simple Friend application example
This example shows how the run() method opens a View window and loads a
template. You can find more information on both the View and the File objects in
this document.

// This is the main run function for jsx files and Friend OS js apps
Application.run = function(msg)
{

// Make a new window with some flags
var v = new View({

34/96

title: 'Welcome to Friend OS!',
width: 640,
height: 500

});

// Load a file from the same dir as the jsx file is located
var f = new File('Progdir:Template.html');
f.onLoad = function(data)
{

// Set it as window content
v.setContent(data);

}
f.load();

// On closing the window, quit.
v.onClose = function()
{

Application.quit();
}

}

The example creates a new View with the title “Welcome to Friend OS!” and sets
the views dimensions to 640x500 pixels. If the user’s screen is smaller in any
dimension, the view will adapt to the available space, e.g. on mobile phones.

After the view is created, a new File object is instantiated. The File object gets a
template as parameter. The example refers to “Progdir:” which the Friend
Workspace always maps to the directory the application is executed from. In this
example, “Template.html” is also located in the same directory or folder as
my_application.js, and that is the Scripts/ directory. See the simple Template.html
file below.

Next, a handler for onLoad is registered. The handler simply puts the received data
as content of the View object. After the onLoad handler is registered the load()
function is called to actually load the data.

The last step is to register an onClose handler on the View that quits the
application once the View is closed.

File Template.html:

<div class="ContentFull Padding ScrollArea">
 <p>Hello world!</p>
 <p><button type="button" onclick="Application.quit()">Goodbye
world!</button></p>
</div>

Communication between applications
Friend Workspace makes use of the HTML security model. It uses the postMessage
feature of Javascript to allow communication between applications and between
different Views of the same application.

35/96

The methods that the Friend Workspace API uses for this are sendMessage and
receiveMessage. The Workspace controls which messages go where. Messages can be
sent with or without a target application/View.

Example of sendMessage:

// Just send a message to the parent Application object.
function sendingAMessage()
{

var o = { an: "object", to: "send" };
Application.sendMessage({ command: 'hello', data: o });

}

Example of receiveMessage:

// Just parse the received message
Application.receiveMessage = function(msg)
{

// Don't treat noisy messages that do not adhere to our spec
if(!msg.command) return;
// Ah we got our message!
if(msg.command == 'hello')
{

console.log("We got a message: ", msg.data);
}

}

Callbacks when messaging
When messaging between applications, using callbacks can be handy to trigger
some code to run once a message has been parsed. An Example is passing a
message to a view window and then triggering a callback. Keep in mind, the scope
of the main application is the scope where you are executing your Friend
application. The scope of the view window is a view that is opened and where a
script has been loaded with its own Application object.

Here is the example:

// Scope of main Application object and add a callbackId that holds
// the callback that will quit the application once triggered
// (Progdir:example.jsx)
viewWindow.sendMessage({

command: 'callme',
callbackId: addCallback(function(){ Application.quit(); })

});

// Scope of view window (Progdir:templates/view.html)
Application.receiveMessage = function(msg)
{

if(msg.command == 'callme')
{

// Send a message to the root Application object
this.sendMessage({

type: 'callback',
callback: msg.callbackId

});

36/96

}
}

Keydata storage for applications
When building applications being able to store sensitive data encrypted like login
credentials and API tokens for external systems is a requirement and a need to make
access easier and secure.

Example of keyData.save:

// Store key data for the Application object.
function saveApplicationCredentials()
{

var encrypt = true;
var name = 'hello';
var data = { username: "[username]", password: "[password]" };
Application.keyData.save(name, data, encrypt, function(e, d)
{

if(e == 'ok')
{

console.log("Credentials stored: ", d);
}

});
}

Example of keyData.get:

// Get stored key data for the Application object
Application.keyData.get(function(e, d)
{

if(e == 'ok')
{

console.log("We got credential data: ", d);
}

});

Methods in the Application object
The Application object has a few reserved methods that are useful for messaging
and communication between the different system layers.

● sendMessage(messageObject) - sends a message to the Workspace
object. May be sent to a predetermined destination, like a specific GUI object,
or to the Workspace object to be processed using system calls.

● setApplicationName(newName) - sets a new application name. This one is
visible in the system task list, and will be the task name to manage, or kill.

● setSingleInstance(boolValue) - if the boolean value is set to true, a
user will not be able to launch any additional instances of the application. If
set to false, the application goes into its default state, allowing for multiple
instances.

37/96

● loadTranslations(path, callback) - loads translations from a path, like
“Progdir:Locale/”. Finds files like en.locale, fr.locale based on your current
locale setting. After having loaded the translations, a callback may be run.

● keyData.save(name, data, encrypt, callback) - save key data related
to the Application, a callback is optional.

● keyData.get(callback, systemWide) - get stored key data related to the
Application, a callback is required. The SystemWide is optional to get key
data available to all applications.

● quit() - terminates the application.

Callback functions in the Application object
When events occur, the Application object will execute a named callback function to
handle the event.

● receiveMessage(messageObject) - when sendMessage has been issued,
the message will be trapped by the receiveMessage callback function.

● onQuit() - when your application is killed or quitting, the onQuit callback
function will be executed, allowing you to clean up before terminating the
application.

Attributes in the Application object
● applicationName - the name of the application, visible in the system task list
● authId - the session ID for the particular application, used for communication

with Friend Core
● viewId - the View window id containing the Application object
● username - the username of the user using the application

Localization
Each Friend application can be localized. You localize an application by populating its
Locale/ directory with language files. The language that will be loaded is set system
wide in the Language user preference application.

Example file names with English, Norwegian and Italian:

● MyApplication/Locale/en.lang

● MyApplication/Locale/no.lang

● MyApplication/Locale/it.lang

Each locale file is a colon separated list of keywords and replacements. Example:

We can also comment our locale file

38/96

i18n_the_bunny : The bunny
i18n_quit : Quit
i18n_edit : Change it
i18n_window_title : My localized window
i18n_my_description : Welcome to my localized application

The left hand side of the locale file has the keyword. This one is the same in each of the
locale files in any language. On the right hand side, you write the actual language
specific string that will show up in your Friend application.

To use the locale feature in Friend, you can use the locale features of the Friend
javascript classes. In addition, there is a i18n() function that you can use in your
applications to automatically translate a string.

// Open a window and show a translated string:
var v = new View({ title: i18n("i18n_window_title"), width: 320, height: 200
});
v.setContent(i18n("i18n_my_description"));

Translations from path
To load translations from a specific path when the application is running, use the
Application.loadTranslations method, described in the Application section. Example:

// Load a translation and say something:
Application.loadTranslations(

"Progdir:Locale/",
function(){ Alert(i18n("i18n_hello")); }

);

Sharing application data between users
Friend allows you to create applications where users can work on the same data
sets in real time. Friend uses websockets for optimal speed, so that e.g.
multiplayer games or applications like instant messaging and whiteboards can be
implemented easily.

The underlying technology layer to achieve this is called Shared Application
Session.

Shared Application Session class
The SAS class is used to connect an application across users. It uses Friend’s
websocket to minimise lag and allow for applications to push data to other users.

The SAS class uses the initiator of a session as pivot point for
communication. Other users’ data is sent to the owner of the session and the
owner can process and if applicable pass on that data to the other users.

SAS.invite(users, inviteMessage, callback)

The invite method is used to invite other users to a shared session.

39/96

The expected parameters are:

● users - array - Array of the usernames to invite (“user1”, “user2”,
“user3”, ...).

● inviteMessage - string - Message to display to users in invite dialog.
● callback - function reference - Reference to function that shall receive the

result of the invite call(s) - will receive false as parameter if the user is not
the session host.

SAS.remove(users, removeMessage, callback)

This method removes one or more users from a shared session.
The expected parameters are:

● users - array - Array of the usernames to remove.
● removeMessage - string - Message to display to users.
● callback - function reference - Reference to function that shall receive the

result of the remove call(s) - will receive false as parameter if the user is not
the session host.

SAS.getUsers(callback)

This method returns an array of the usernames that participate in a shared session.

The only parameter is the callback function that shall receive the data from the
server.

SAS.send(event, username)

The send method sends an event to be shared with the other users. Username is an
optional parameter available only to the session host; the event may be sent from
the host only to the specified user. Other participant’s events are always sent only
to the session host, and thus username parameter is ignored.

● event - js-object - on the form:
{

type : ‘event-name’,
data : <data>

}

● type - string - the name of the event the recipient is listening for
● data - the data that will be passed on to the event handler

● username - string, optional - name of the single user that will receive this
event.

40/96

SAS.on(event, handler)

The on method is used to register handlers for given events.
The expected parameters are

● event - string - the event that shall be handled
● handler - function reference - the function that shall receive these events

SAS.off(event)

Unregister a handler for the given event.
The only parameter is event - string - the event to unregister.

SAS.close()

Close a shared session. Can only be called by the host and will inform all
participants about the session being ended.

Event overview
The SAS class has a couple of built-in events. In addition to that, each application
can register its own set of events.

Events for host mode

● user-add
● user-remove
● user-list

Events for client mode:

● client-accept
● client-decline
● client-close

Application specific events

Application specific events can be registered for both the session host and
participants. The same type of event can be used for both. Even though the host
can send different event data to participants than he originally received himself for
a certain kind of event. Look for the draw event in the example below.

Shared Application Session example app: Whiteboard
The Whiteboard app shows how the SAS class enables an application to allow
several users to edit the same dataset collaboratively in real time. It is a simple
drawing application that assigns each user a color and lets them draw on the same
virtual whiteboard.
The application differentiates between two modes: host and client mode. The
Application.run method in the class executes that check:

41/96

if(conf.hasOwnProperty('args') &&
conf.args.hasOwnProperty('sasid'))

{
Application.sasid = conf.args.sasid;

}
else
{

Application.isHost = true;
}

The SAS class will launch the application on invited users’ Workspaces who have the
correct id parameter Application. isHost should default to false.

Depending on the mode, the application then registers for different types of events:

Application.bindHostEvents = function()
{

Application.sas.on('client-accept', Application.clientAccepted);
Application.sas.on('client-decline', Application.clientDeclined);
Application.sas.on('client-close', Application.clientClosed);
Application.sas.on('draw', Application.clientMessage);

}

Application.bindClientEvents = function()
{

Application.sas.on('draw', Application.boardMessage);
Application.sas.on('set-color', Application.setUserColor);
Application.sas.on('user-add', Application.userAdded);
Application.sas.on('user-list', Application.updateUserlist);
Application.sas.on('user-remove', Application.userRemoved);

}

The two functions above register the relevant events for the two modes. The draw
event is registered in both cases, but different handlers are chosen for the event.
This allows the session host to verify and if necessary modify the data before
passing it on to other participants.

Helper functions
Like most frameworks, Friend also provides a set of helper functions that are available
to Javascript programmers. These consist of Storage functions, functions for
Encode/Decode of data, and DOM helper functions. They help developers quickly
measure and organize data objects and structures in their applications. These functions
are available in any Friend application that utilizes API v1 or later.

Storage functions

SetCookie(key, value, expiry)
Sets a cookie value in the client browser. key and value are both strings. expiry is the
amount of days before the cookie expires.

42/96

Has no return value.

GetCookie(key)
Retrieves the value of a cookie by key.
Returns the value if found. If not, returns false.

DelCookie(key)
Removes a cookie by key.
Has no return value.

Encoding and decoding of data
EntityEncode(string)
Encodes a string into HTML entities.
Returns an HTML encoded string.

EntityDecode(string)
Decodes a string from HTML entities.
Returns the character string decoded from the HTML entities.

DOM helper functions
SetCursorPosition(element, position)
Sets the cursor position in an interactive input element or contentEditable element.
Has no return value.

TextAreaToWYSIWYG(element)
Converts a textarea input element into a DIV element with a contentEditable
attribute.
Returns true on success or false on failure.

Include(scriptSrc)
Adds a script element to the DOM and loads it. Only adds it if it has not already
been added.
Returns true on success or false on failure.

ActivateScripts(string)
Extracts scripts from a string and adds them to the DOM, effectively running them.
Has no return value.

RunScripts(string)
Extracts scripts from a string and runs them.
Has no return value.

GetWindowWidth()
Returns the width of the browser window.

GetWindowHeight()
Returns the height of the browser window.

43/96

GetElementWidth(element)
Returns the width of a DOM element.

GetElementWidthTotal(element)
Returns the width of a DOM element, including margins, borders and padding.

GetElementHeight(element)
Returns the height of a DOM element.

GetElementLeft(element)
Returns the left position of an element in the browser window.

GetElementTop(element)
Returns the top position of an element in the browser window.

Localization functions
i18n(string)
Returns a translated string.

i18nAddPath(path)
Adds a path where Friend can find locale files. Returns nothing.

i18nReplace(string, array)
Searches through a string and replaces keywords found in an array with
translations. Returns nothing.

i18nClearLocale()
Removes all translations from memory.

String manipulation functions
Trim(string, direction)
Strips away whitespace on either the left, the right or both sides of a string.

StrPad(string, length, padder)
Fills a string with a padder for a total length of the new string. Returns the padded
string.

EntityEncode(string)
Returns a string encoded with HTML entities.

EntityDecode(string)
Returns a string where HTML entities have been decoded.

NumberExtract(string)
Takes a number found in a string and converts it to a float, double or integer.
Returns the number.

NumberFormat(string, decimals)

44/96

Takes a string containing a number and formats the number with x amount of
decimals. Returns the resulting string.

Dialog functions
Alert(title, string, closetext)
Pops up a View window with the title as window title and string as dialog message.
An optional closetext string can be passed, overriding the default localized
“Understood” button text.

Confirm(title, string, callback)
The confirm dialog pops up a View window with the title as window title, and string
as dialog message. You then get two buttons, one that confirms, another that
cancels. The result is sent back to the callback function.

NotifyMessage(title, string, callback, clickcallback)
Pops up a little bubble in the tray area of the Friend Workspace. This can be used to
signal the user that something noteworthy has happened. This message will also be
logged, for later review by the user. callback is a callback function that is run when
the message has been displayed. clickcallback is a callback function that is run
when the bubble is clicked by the user. This can be used to bring up a View window
or Widget with more information or user interaction opportunities.

The View class
The View class is used to create windows in the Friend Workspace. The Workspace
also has a Screen class to open new Screens for applications where this makes
sense. In most cases, the View class is used to provider a user interface for an
application.

// Make a new window with some flags
var v = new View({

title: 'Welcome to Friend OS!',
width: 640,
height: 500

});

The code snippet above shows a couple of lines from the example application. A
view is instantiated with a configuration object. The following properties are
supported:

● title - String - no default - title of the View
● top - Integer or “center” - placement on y axis on screen
● left - Integer or “center” - placement on x axis on screen
● width - Integer - no default - initial width of the view
● height - Integer - no default - initial height of the view
● mobileMaximised - Boolean - default: false - maximize view in mobile view
● maximized - Boolean - default: false - maximize view to available screen real

estate.

45/96

● hidden - Boolean - default: false - hide the view
● invisible - Boolean - default: false - make the view invisible
● borderless - Boolean - default: false - display the windows without border
● resize - Boolean - default: true - makes the windows resizable/fixed size -

even a fixed size window will never be bigger than the available screen real
estate

● screen - display this view window on the screen specified (object)
● fullscreenenabled - enables ctrl+f keys to set the window content to full

screen
● viewGroups - allows for nested view windows
● viewGroup - redirects the display of the view window to a view group
● frameworks - object - allows you to select GUI framework and definition (se

below)

There are more options that the system uses internally. For application
development, these are not relevant.

View groups
If you want to group view windows inside of existing windows to simplify or
unclutter your applications, view groups give you this opportunity. View groups are
areas inside an open view window where you can add other view windows, either as
rectangular areas or inside a tabbed list.

Grouped view windows technically behaves the same way as a normal view window.
This means that your code connected to the view needs no alteration. Where their
behavior differs, is that these nested views are stripped of their window
management properties. The views can not be minimized or moved separately.
Their window glyphs are not rendered, and their position is determined by the group
layout.

To enable view groups, you define your view group on your host view window and
then you redirect other views to display in that group.

Example:

// Create a new view with a view group
var v = new View({

title: "My view group window",
width: 600,
height: 600

});
// Create a view group, using tabs
v.setFlag("viewGroups", { id: "Mygroup", xposition: "right", yposition: "top", width:
"20%", height: "100%", mode: "horizontalTabs" });

// Add the first nested view window
var nested1 = new View({

title: "Nested 1",
viewGroup: { view: v.getViewId(), viewGroup: "Mygroup" }

});

46/96

// Add the second nested view window
var nested2 = new View({

title: "Nested 2",
viewGroup: { view: v.getViewId(), viewGroup: "Mygroup" }

});

View group properties

● id - the identifying name for the view group
● width - the width of the group. Takes value just like CSS.
● height - the height of the group. Takes value just like CSS.
● xposition - “left” or “right”.
● yposition - “top or bottom”.
● mode - how to manage nested view windows. Can be:

○ horizontalTabs - ignores view dimensions and manages in tabs
○ verticalTabs - ignores view dimensions and manages in tabs
○ unmanaged - no tabs

Methods in the View class

The View class provides the following functions to let developers set its contents:

● setContent(content) - sets content as the content of the View; content
should be an HTML string. The content will be added as child to the body tag
in the iFrame the View uses. Standard theme dependent Friend CSS is
applied. The API is available to script references in the content. The content
string will be stripped from inline script and style tags.

● setRichContent(content) - sets rich content in an additional iFrame in
the View. Script tags are removed from the provided content string.

● setRichContentUrl(url, base, appId, filePath, callback) - sets
the content to be an iFrame with the source defined by the url parameter.
The API is not available. No Friend theme CSS is applied to the content.

● loadTemplate(url) - load a template from an URL. The API is not
available to script references in the content.

● setContentById(id, data, callback) - set the content of a given node
- node is identified by its id. The callback is executed once the content has
been set.

● getContentById(identifier, flag, callback) - get the content of a
node inside a View. The callback is executed once the content has been
acquired.

● preventClose(trueOrFalse) - set value to prevent the app to close its
view window. You can still kill the application to close the view window, but

47/96

the close() function will no longer be able to affect the view window.

● sendMessage(dataObject) - sends a message to the main Application
object that is located in the scope of the View window. Each View has its own
Application object when it is using the API. The main application should keep
track of its view so that it can send messages between them.

● setMenuItems(jsonObject) - sets the menu for the view window. The
parameter it takes is in the form of a JSON object. Please read more in
“Pulldown menus”.

● getId() - gets the unique view object id

The View class provides a couple of interfaces to let an application react to user
interaction on the view:

● onClose - fired when the view is closed. Either by click on the close button
or by a function call from the Application that controls the view. If onClose
returns false, it will prevent the closing of the view.

A View has a resize element that allows users to resize the view (if resize is not set
to false). A View also has a title bar that allows the View to be dragged around on
the workspace.

On the top of a View, a couple of buttons are available. The availability of the
different buttons depends both on the theme used and on the end users device
(desktop/mobile):

Close button - always available.
Minimize button - minimizes the view
Swap depth button - brings a view to the front or sends it to the back of the display
stack. The workspace user may also single click on the View title bar to raise that
View to the front (or ‘top’ of the display stack).

Global functions related to view

View has some global functions that manipulate the views in your applications.
Sometimes, you will be in an application scope where your view object is not
directly available.

● CloseView({viewId|viewObject}) - closes a view window. You can either
pass the ID of the view window (by calling getId() on the object), or pass the
object directly.

Using frameworks
Friend supports multiple GUI frameworks - and has built-in support for HTML
template driven GUI as well as an agnostic JSON defined GUI called FUI. The HTML

48/96

template driven GUI implementation is there for web developers who are more
comfortable to design and create layouts using markup. Please refer to
“Programming GUIs” to read more about that.

Frameworks ought to be more comfortable with programmers who are used to
various traditional GUI toolkits – and they come with some fundamental advantages.
When deciding to use FUI to build your GUI, you can retarget your application on
multiple GUI engines without changing your application logic.

Please refer to the FUI section of this document to read more about this GUI
framework.

The Widget class
The Widget class is a bit like the View class, but has both a different visual
appearance and a slightly different behaviour. Of course, a View window is meant to
manage different GUI layouts in your application, while widgets are more generic.
With widgets, you have complete visual control. A Widget may be half transparent,
like the Dock, or completely opaque, like a View window. A current limitation is that
it can only be opened on the main Workspace screen.

When creating a new Widget, this is the syntax:

var w = new Widget({
width: 400,
height: 400,
valign: 'bottom',
halign: 'right',
above: true

});

This would create a Widget that is 400x400 pixels wide and high, aligned bottom
right of the screen, always staying above View windows and other elements (except
the screen title bar).

Here is a list of supported flags:

● animate - whether or not size and position changes should be animated
● transparent - set if the Widget background is transparent
● background - set if there is a background image or color
● border-radius - set if you want rounded corners, in pixels
● width - the width in pixels
● height - the height in pixels
● top - the y coordinate of the Widget, in pixels
● left - the x coordinate of the Widget, in pixels
● valign - vertical alignment, top, bottom or middle
● halign - horizontal alignment, left, center or right
● scrolling - if there should be scrollbars on overflowing content

49/96

● above - if the Widget should lay above other views and widgets
● below - if the Widget should lay below other views and widgets

Methods in the Widget class
The Widget class provides the following methods:

● getWidgetId() - gets the id for the Widget, used to pass with messages

● getFlag(string) - gets the flag value of the Widget, by name

● setFlag(string, value) - sets the flag value of the Widget, by name and
value

● setContent(string, callback) - sets the HTML content of the Widget.
You can add an optional callback function that will be executed once the
content has been fully set.

● raise() - gives the Widget a higher z-index

● lower() - gives the Widget a lower z-index

● autosize() - makes the Widget change size to fit its content

● close() - closes the Widget and frees up memory

When an application quits, all of its widgets are automatically closed.

The Screen class
The Screen class is used to create new screens in the Friend Workspace. The screen
class is there to help you organize your View windows on a separate spatial area, as
an alternative to just opening a View window on the default Friend Workspace
screen.

// Make a new window with some flags
var v = new Screen({ title: 'Welcome to Friend OS!' });

The code snippet above shows a couple of lines from the example application. A
screen is instantiated with a configuration object. The following properties are
supported:

● title - String - no default - title of the View
● background - Custom background image or color

There are more options that the system uses internally. For application
development, these are not relevant.

50/96

Methods in the Screen class

The Screen class provides the following functions to let developers set the Screen
contents:

● setContent(content, callback) - sets content as the content of the
Screen; content should be an HTML string. The content will be added as child
to the body tag in the iFrame the Screen uses. Standard theme dependent
Friend CSS is applied. The API is available. The content string will be stripped
from inline script and style tags. The callback is executed once the content
has been set.

● setRichContentUrl(url) - sets the content to be an iFrame with the
source defined by the url parameter. The API is not available. No Friend
theme CSS is applied to the content.

● loadTemplate(url) - load a template from an URL. API is not available.

● screenToFront() - Makes this screen the front most screen.

● sendMessage(dataObject) - sends a message to the main Application
object that is located in the scope of the screen. Each screen has its own
Application object when it is using the API. The main Application should keep
track of its screens so that it can send messages between them.

● setMenuItems(jsonObject) - sets the menu for the screen. The parameter
it takes is in the form of a JSON object. Please read more in “Pulldown
menus”.

The Screen class provides a couple of interfaces to let an application react to user
interaction on the screen:

● onClose - fires when the screen is closed. Either by click on the close button
or by a function call from the Application that controls the screen.

File dialogs
A file dialog is a special class. It shows up in a View window and gives the result of
user interaction in a callback. It is not a class that instantiates a reusable object. It
is used in a disposable way. An example of use:

// Open a load file dialog and return selected files
var description = {

triggerFunction: function(items)
{

console.log("These files and directories were selected:", items
);

},

51/96

path: "Mountlist:",
type: "load",
title: "My file dialog",
filename: "",
mainView: Application.viewId

}
// Open the file dialog view window
var d = new Filedialog(description);

As you can see, the file dialog takes a description object in the constructor. The
dialog immediately appears. The object that is returned is irrelevant, and can be
disposed of.

These attributes are available for file dialogs:

● triggerFunction - a callback function that will receive the result of the file
dialog. This might be false, or an array of fileinfo objects.

● path - a Friend path. Mountlist: can be given if you just want to show the list
of available disk volumes.

● type - load or open for loading files, save for saving a file, and path for just
selecting a path

● title - the view window title for the file dialog
● filename - optional - if it is a save dialog, then you can preset what the

proposed save filename should be
● mainView - optional - a file dialog can block a parent view window, so that

you can not access it before a selection has been made. The value must be a
valid viewId, which you will get from any view object or Application contained
inside a view.

The File Class
The File class is used to access files in your Friend application. It is using the
Dormant DOS kernel shell. Using the File class, you can load and save data using
Friend paths. You can also post binary data to file names and call library functions
on disk or volume based libraries.

Examples of use:

// Load a file from the Home: drive
var f = new File("Home:template.html");
f.onLoad = function(data)
{

console.log("This is the content: " + data);
}
f.load();

// Call a library method on a disk based library
var l = new File("Home:Libraries/mylib.library");
f.onCall = function()
{

Alert("All done!");
}
f.call("convertimage",

52/96

{
inpath: "Test:image.jpg",
outpath: "Test:out.png",
format: "png"

}
);

Friend paths
Friend paths usually start with a given mount, like .e.g “Home:” or
“OurWorkgroup:”. There are however a couple of prefixes with special meaning:

“Progdir:” - when running a JSX the “Progdir:” will always point to the directory the
script is running in. That makes it easy to move complete application folders around
without breaking their functionality.

“System:” the System: shortcut points to the web server root path. It is read only
and allows one to include files from the filesystem inside Friend applications. This
way e.g. icons from the gfx directory can be included:

System:gfx/icons/64x64/apps/accessories-text-editor.png

Methods in the File class
● File(path) - constructor. Takes a Friend path to initialize (optional when

only using save()).
● i18n() - replaces all keywords found in the currently applicable locale file

when it loads the content.
● onError() - should be overloaded. Is triggered when an error occurs when

loading or saving data.
● doReplacements()- replaces registered keywords on loaded content.
● load() - loads data by the current path.
● save(content, path) - saves data (content) into a file at a Friend path.

The path is optional. If it isn’t set, it will use the path given in the constructor.
● call(command, arguments) - calls a library function on a library file. The

command is a string keyword. The arguments are given in a key/value object
structure.

● post(content, filename) - posts as an upload to a filename friend path
with content.

● addVar(key, value) - adds variables that will be sent to the server when
using load(), save() and call().

● onLoad(data) - should be overloaded. Is executed with data as its first
argument after load() has been called.

● onSave() - should be overloaded. Is executed after save() has been called.
● onCall() - should be overloaded. Is executed after call() has been called.
● onPost() - should be overloaded. Is executed after post() has been called.

53/96

Public variables in the File class
● replacements - holds a key value object of all keywords to be replaced when

the file content is loaded.

The Door Class
As one of the “low level” classes in Friend, you use the Door class when you need
extra precision when working with files. The Door class abstracts the DOS drivers
directly, and operates on a disk volume.

Here’s an example of getting the file information about a file using the Door class:

// Get a door object and get file information about image
var d = new Door(“Home:”);
d.dosAction(“file/info”, { path: “Home:Myfile.jpeg” },

function(data)
{

var res = data.split(“<!--separate→”);
if(res[0] != “ok”)

return false;
var d = JSON.parse(res[1]);
console.log(“Filesize: “ + d.Filesize);

}
);

The Module Class
The Module class is used to abstract the Friend Core modules. A module is a
structure in Friend Core that holds an amount of server functions. Each server
function can take arguments and return some data to the user. Modules are
powerful and can be written in any language, such as PHP, which is utilized in many
of the core Friend modules. By allowing developers to extend Friend with scripted
modules, they can rapidly implement features on the server.

Example of a module call:

// Test the help function call in the system module
var m = new Module("system");
m.onExecuted = function(returnCode, returnData)
{

if(returnCode != "ok")
{

Alert("Could not get help.");
return false;

}
Alert("Help: " + returnData);

}
m.execute("help");

54/96

Methods in the Module class
● Module(moduleName) - constructor. Takes a module name as its argument.

The module object will then initialize as an abstraction to that module, if it
exists.

● addVar(key, value) - adds a variable to the module object. This variable
will then be passed in the next module call.

● execute(function, args) - executes a module function call. The args
variable is optional, and should be in the format of an object with key / value
pairs.

● onExecuted(returnCode, returnValue) - should be overloaded. Is called
once “execute” returns with a returnCode and/or returnValue.

The Library Class
The Library class is used to abstract Friend binary libraries. These run in server
memory and give access to high speed functionality on the server. Said in a simpler
manner, they allow you to use Linux or Windows binaries in your Friend
Javascript application.

Example of a library call:

// Test a library call
var l = new Library("system.library");
l.onExecuted = function(returnCode, returnData)
{

if(returnCode != "ok")
{

Alert("Could not call function.");
return false;

}
Alert("We got a directory listing: " + returnData);

}
l.execute("file/getinfo", { path: "Home:" });

Methods in the Library class
● Library(libraryName) - constructor. Takes a library name as its

argument. The library object will then initialize as an abstraction to that
library, if it exists.

● addVar(key, value) - adds a variable to the library object. This variable
will then be passed in the next library call.

● execute(function, args) - executes a library function call. The args
variable is optional, and should be in the format of an object with key / value
pairs.

● onExecuted(returnCode, returnValue) - should be overloaded. Is called
once “execute” returns with a returnCode and/or returnValue.

55/96

FriendNetwork
FriendNetwork gives you the possibility to easily connect your Javascript application
to any other on yours or other people's machine and exchange messages. A good
example of the use of FriendNetwork is in the Shell, where the 'friendnetwork'
commands allow you to be a host or access a distant host shell.
FriendNetwork can provide classic WebSocket connections between two machines,
or faster peer-to-peer data exchange for games or large data transfers without
having to pass through a server.

Principle
We have designed FriendNetwork so that it is as easy to use as possible from your
Javascript application.

● You access FriendNetwork via FriendNetwork.method_name(parameters)
● You receive the result of this call as a message sent to the Application object

that has done the call (in the receiveMessage method). The object
transmitted in this message will have as properties :
- command: 'friendnetwork'
- subCommand: 'depending_on_call'

FriendNetwork API

FriendNetwork.host(hostName [, password])

Initiate a hosting session. Your host will be visible on the network.
● hostName: the name of the host to create, example 'MyGame', 'Charles

Cave'. This name will appear when calling FriendNetwork.list.
● password: this optional parameter can be used when establishing non peer-

to-peer connexions. If a client asks for permission to connect to your host,
and if 'password' is not defined, he will have to return your own Friend
password to be able to connect. If you provide a password, he will able to
connect with both your own Friend password or the provided one, thus
enabling two types of connexions, one for administrators (you or anyone who
knows your Friend password) and guests.

Once the host is established, FriendNetwork sends a message back to the
application:

● command: 'friendnetwork'
● subCommand: 'host'
● key: the key to this host, that you should save for later use
● name: the full name of your host, in the form of 'host_name@user_name'

When a client connects to your host, you receives a message:
● command: 'friendnetwork'
● subCommand: 'cllientConnected'
● hostKey: the key of your host
● key: the key of the new session created for this client, different from the host

key., You should save it. Ann unlimited number of client can connect to your
host.

56/96

● name: the username of the the client that connected
● sessionPassword: true if the client provided your main Friend password

(administrator), false if he used the guest password.

When a client disconnects himself from your host, you receives a message:
● command: 'friendnetwork'
● subCommand: 'clientDisconnected'
● hostKey: the key of your host
● key: the key of the client session
● name: the username of the person who disconnected

When a client sends a message to your host, you receives a message:
● command: 'friendnetwork'
● subCommand: 'messageFromClient'
● hostKey: the key of your host
● key: the key of the client session
● data: the data sent by the client

If an error occurred, an error message is sent:
● command: 'friendnetwork'
● subCommand: 'error'
● response: ERR_HOST_ALREADY_EXISTS or other connexion errors (see below)

FriendNetwork.setPassword(hostKey, password)

Changes or defines the guest password of your hosting session.
● hostKey: the key of the host
● password: a string containing the new password

If an error occurred, an error message is sent:
● command: 'friendnetwork'
● subCommand: 'error'
● error: 'ERR_HOST_NOT_FOUND'

FriendNetwork.dispose(hostKey)

Closes the host, making it invisible on the network and closing all communications.
Every connected client receive a message allowing them to take action.

● hostKey: the key of the host session, as returned by the 'host' method

Once the host has been successfully closed, your application receives a message:
● command: 'friendnetwork'
● subCommand: 'dispose'
● hostKey: the key of the host closed
● name: the name of the host closed

If an error occurred, an error message is sent:
● command: 'friendnetwork'
● subCommand: 'error'

57/96

● error: 'ERR_HOST_NOT_FOUND' if the key is invalid or other connexion errors
(see below)

FriendNetwork.connect(hostName)

Initiate a WebSocket connexion with a host.
● hostName: the name of the host to connect to. It can be in the form of

'host_name' (example 'Charles's Cave' or combined with the username of the
hosting Friend machine (example 'Charles' Cave@charles')

If the connexion request has reached the host, your application receives a message:
● command: 'friendnetwork'
● subCommand: 'getCredentials'
● key: the key of this client session, to save for later use

You should answer to this request by calling FriendNetwork.sendCredentials with
the proper password.

If an error occurs, an error message is sent.

FriendNetwork.sendCredentials(key, password)

Use this method to send the password to your host.
● key: the key of the client session
● password: a string containing the password

After calling this method, you can received two different messages.

If the password was incorrect:
● command: 'friendnetworkk'
● subCommand: 'wrongCredentials'

You have a limited time to send the password again until you will receive a
'credentialsTiimeout' message, signifying that the connexion is aborted.

If the password was correct:
● command: 'friendNetwork'
● subCommand: 'connected'
● key: the client key
● hostName: the name of the host
● sessionPassword: true if you have connected as an administrator with the

host Friend password, false if you have connected as a guest with the
secondary password

Once the 'connected"' message has been received you can start to send messages
to the host, and you will receive his messages.

When you receive a message from your host, this message is transmitted to your
application:

● command: 'friendnetwork'
● subCommand: 'messageFromHost'
● key: the key of the client session
● name: the name of the host

58/96

● data: the data the host sent to you

If the host has closed his connexion, you receive a message:
● command: 'friendnetwork'
● subCommand: 'hostDisconnected'
● key: the key of the client session that has been closed
● name: the name of the host

FriendNetwork.disconnect(key)

Closes a connexion with a host. The host will receive a message indicating that you
have quit.

● key: the key of the client session, as returned by FriendNetwork.connect

If an error occurred, an error message is sent:
● command: 'friendnetwork'
● subCommand: 'error'
● error: 'ERR_CLIENT_NOT_FOUND' if the key is invalid or other connexion

errors

FriendNetwork.send(key, data)

Sends a message to the distant application.
● key: the key to the communication session. This can be the key received in

the 'connected' message if you are a client, or the key received in the
'clientConnected' message if you are a host. If you use the key of your host,
as received in the 'host' message, the message will be sent to all the
connected clients.

● data: the data to be sent. It can be a string or a Javascript object containing
properties.

If the message is sent to a host, he will received a 'messageFromClient' message.
If the message is sent to a client, he will receive a 'messageFromHost' message.

FriendNetwork.closeApplication()

Call this method when you exit your application. It will close all hosts and clients
and send the disconnexion messages to the distant sides.

FriendNetwork.status()

This method returns a list of currently open session of FriendNetwork for the current
user.

After calling it, you will receive the following message:
● command: 'friendnetwork'
● subCommand: 'status'
● connected: true if connected to the server or false if not

59/96

● hosts: an array of the hosts currently present on the machine.
- key: the FriendNetwork key of this host
- name: its name (host_name@user_name)
- applicationName: the name of the application that created the host
(currently 'application')
- applicationId: the identifier of the application that created the host
- window: the window of the application that created the host
- hosting: an array of the sessions currently hosted by this host, containing:

- key: the FriendNetwork key of this session
- distantName: the username of the client
- distantAppName: the name of the application that connected

● clients: an array of the clients currently connected to distant hosts
- key: the FriendNetwork key of the client
- window: the window that established the connexion
- hostName: the name of the host that it is connected to
- applicationId: the identifier of the application that established the connexion
- applicationName: the name of the application that established the
connexion (currently 'application')

Errors

FriendNetwork errors are reported by a specific message to your application.
● command: 'friendnetwork'
● subCommand: 'error'
● error: string containing the name of the error
● key: the key of the session that sent the error, if applicable

'error' can have the following values
● 'ERR_HOST_NOT_FOUND': the host was not found in the list of hosts, or the

hostKey provided was invalid
● 'ERR_CLIENT_NOT_FOUND': the client key was invalid
● 'ERR_TIMEOUT': connexion has timed-out, session 'key' is closed
● 'ERR_CREDENTIALS_TIMEOUT': the time allowed to send the correct password

has exceeded the defined value. The connexion is refused and the session is
closed.

● 'ERR_CONN_CLOSED' the connexion has been closed due to a network
problem

● 'ERR_REQUEST_TIMEOUT': the network request got no reply from the
network, indicating that the distant side may have abruptly disconnected

Programming GUIs
Friend implements a bare bones GUI toolkit based on HTML5 templates. At this
moment in time, any rudimentary GUI layout is possible using the Friend GUI
classes and helper functions. If you want to read about how to write applications
using FUI, our more advanced GUI framework, please look in the FUI section below.

Friend distinguishes between HTML5 templates and GUI logic. When writing a
GUI for Friend, one typically opens up a Friend screen or view window and then

60/96

loads an HTML5 template into it. After that, you may want to run some Javascript
that instantiates GUI objects on the template. In Friend, we offer quite a few GUI
objects to play with.

How to write templates
When writing an HTML5 template for a Friend GUI, there are a lot of standard
classes you can use to create a user friendly and appealing layout. These classes
are theme-able, and they are designed to be responsive for mobile devices.
Additionally, they allow you to combine them with other CSS frameworks that you
may prefer.

There are many different types of GUI layouts for different types of applications.
Some applications need horizontal tabs. Some use vertical tabs. Some are more like
dialogs or requesters. Depending on what you want to achieve, we will use these
layout types to aid us in exploring the CSS classes needed for each one.

A simple layout with a bottom bar

Here is a simple layout where we allow a user to input a username and password. It
uses simple CSS classes. Here we start out with the ContentFull class that
encompasses the entire GUI. It has 100% width and height, starting from the top,
left corner of the View window. Here, another class has been entered,
LayoutButtonbarBottom, which assumes a layout where you have a content pane on
the top, and a button bar pane on the bottom. Following this, we have the
VContentTop class, which gives is the pane on the top. Then we have the
VContentBottom class, which gives us the button bar on the bottom. The
VContentTop also has the ScrollArea class, which makes sure there is a scroll bar if
the content is higher than the area of the pane. The Padding class makes sure the
default padded spaces are put in place in the content panes. The BorderTop class
just puts a border to indicate where the button bar is positioned to the user.

For the content inside the ScrollArea, we have a Padding area with a simple strong
heading. We could use H1-6 here, but in GUIs, we often just use bold or normal text
elements. Inside we have an HRow, which stands for a horizontal row, meaning, we
expect floating elements. These are defined with HContentX (where X is 5-100 for
percent of the row width). The FloatLeft class indicates that the column field should
float in the row container.

With HRows and HContentX elements defined, you can create a complex GUI inside
a View window.

<div class="ContentFull LayoutButtonbarBottom">
<div class="VContentTop ScrollArea">

<div class="Padding">
<p class="Layout">

Enter username and password
</p>
<div class="HRow">

<div class="HContent30 FloatLeft">
Username:

</div>

61/96

<div class="HContent70 FloatLeft">
<input type="text" class="FullWidth"/>

</div>
</div>
<div class="HRow">

<div class="HContent30 FloatLeft">
Password:

</div>
<div class="HContent70 FloatLeft">

<input type="password" class="FullWidth"/>
</div>

</div>
</div>

</div>
<div class="VContentBottom Padding BackgroundDefault BorderTop">

<button type="button">Save user!</button>
</div>

</div>

The horizontal tab layout

Here we are creating an application with a few tabs and a bottom bar with buttons.

<div class="ContentFull LayoutButtonbarBottom">
<div class="VContentTop ScrollArea">

<div class="Padding">
<div class="Tabs" id="Mytabs">

<div class="Tab">Tab 1</div>
<div class="Tab">Tab 2</div>
<div class="Page">

<div class="Padding">
<p>This is the content of page 1.</p>

</div>
</div>
<div class="Page">

<div class="Padding">
<p>This is the page 2 content

text..</p>
</div>

</div>
</div>

</div>
</div>
<div class="VContentBottom Padding BackgroundDefault BorderTop">

<button type="button">Ok that was fun</button>
</div>

</div>

The content of the top pane is the tab layout. It is a series of classes that first define
the tab area itself, then the pages that belong to the tabs. The tabs and the pages
are associated in a chronological, ascending order. Tabs are described later in this
document - they need to be initialized by Javascript in order to work.

62/96

Tall tabs, centered on screen

Sometimes, you would want taller tabs - and perhaps even centered on screen. The
class Tall can be added to tabs for this purpose. Centered can be added in the
“Tabs” container element. Example:

<div class="ContentFull LayoutButtonbarBottom">
<div class="VContentTop ScrollArea">

<div class="Padding">
<div class="Tabs Centered" id="Mytabs">

<div class="Tab Tall">Tab 1</div>
<div class="Tab Tall">Tab 2</div>
<div class="Page">

<div class="Padding">
<p>This is the content of page 1.</p>

</div>
</div>
<div class="Page">

<div class="Padding">
<p>This is the page 2 content

text..</p>
</div>

</div>
</div>

</div>
</div>
<div class="VContentBottom Padding BackgroundDefault BorderTop">

<button type="button">Ok that was fun</button>
</div>

</div>

A double column layout

Here, we are creating a GUI layout that has two columns, one of 60% width and
another with 40% width. The left column has a negative background.

<div class="ContentFull">
<div class="HContentLeft HContent60 BackgroundNegative">

<p><center>Left</center></p>
</div>
<div class="HContentRight HContent40">

<p><center>Right</center></p>
</div>

</div>

Triple column layout using nesting

By using nested HContentLeft/Right elements, we can achieve three columns.
Notice the HContent66 and HContent33 classes. They are specially made to obtain
one or two thirds of a 100 percent for use in layouts. For the rest, you only have
increments of 5 in the HContent class, like HContent5 and HContent55. Each
column is separated by borders.

<div class="ContentFull">
<div class="HContentLeft HContent66">

<div class="HContentLeft HContent50">
<p><center>Column 1</center></p>

63/96

</div>
<div class="HContentRight HContent50 BorderLeft">

<p><center>Column 2</center></p>
</div>

</div>
<div class="HContentRight HContent33 BorderLeft">

<p><center>Column 3</center></p>
</div>

</div>

Vertical layouts

Just like we have HContentLeft and HContentRight, we also have VContentTop and
VContentBottom, as shown earlier. These can be combined with VContentX to
achieve vertical layouts - with nesting and all.

<div class="ContentFull">
<div class="VContentTop VContent80">

<div class="HContentLeft HContent50">
<p><center>Row 1, Column 1</center></p>

</div>
<div class="HContentRight HContent50 BorderLeft">

<p><center>Row 1, Column 2</center></p>
</div>

</div>
<div class="VContentBottom VContent20 BorderTop">

<p><center>Row 2</center></p>
</div>

</div>

Lists

There are several list classes in Friend. But a typical list has a checkered
background and rows with full width in respect to its container.

<div class="ContentFull">
<div class="ZebraList FullWidth">

<div class="sw1">List item 1</div>
<div class="sw2">List item 2</div>
<div class="sw1">List item 3</div>
<div class="sw2">List item 4</div>

</div>
</div>

This creates a list with full width, and checkered list items. If you want columns in
these items, you need to add the Columns class, HContentX and FloatLeft:

<div class="ContentFull">
<div class="ZebraList FullWidth">

<div class="sw1 Columns">
<div class="HContent60 BorderRight Ellipsis FloatLeft">

60% width list item 1a
</div>
<div class="HContent40 Ellipsis FloatLeft">

40% width list item 1b

64/96

</div>
</div>
<div class="sw2">List item 2</div>
<div class="sw1">List item 3</div>
<div class="sw2">List item 4</div>

</div>
</div>

Here, we are also using borders to separate the columns. In addition, we’re using
Ellipsis to make sure that overflowing text do not break the column layout.

A list of classes and their description

The classes in Friend are meant to be themable. Because of this, margin width or
padding size may vary between themes. To make sure that the applications you
make are theme compatible, you should stick to these css classes for the main
layout of your GUI. You may of course add extra css classes where need be, but in
that case, be mindful and remember to test your application in various themes
before making it available to your users.

BorderLeft,
BorderTop,
BorderRight,
BorderBottom

Default borders for each corner of an element
separately.

BorderDefault Combination of borders on each side of an element.

Rounded Gives an element rounded corners.

PaddingTop,
PaddingLeft,
PaddingRight,
PaddingBottom

Gives an element padding on a specific side of the
element.

Padding Gives an element padding.

MarginTop,
MarginLeft,
MarginRight,
MarginBottom

Gives an element margin on a specific side of the
element.

Margins Gives an element margin on each side of the element.

Ellipsis Intersect text overflow with three dots (“...”)

ZebraList Normal checkered list. Expects sw1 and sw2 classes on
list items.

BackgroundLists Negatively colored lists. Expects sw1 and sw2 classes on
list items.

65/96

Mouse pointers

In Friend, there’s a special mouse pointer setup to show various states of the Friend
system, and the elements your mouse pointer is hovering over. Each element in a
Friend GUI should have a css class that tells Friend in which state the element is. A
state may be: busy, blocked, clickable, accurate, movable, typeable,
neutral. Here is a list, with descriptions, of each mouse pointer state.

MouseDefault or none
This is the default mouse pointer state in Friend. In the default theme, the pointer is
blue, to indicate that you can click your mouse without activating any GUI element.

MousePointer
This class is set on an element to indicate to the user that it is clickable. By default,
this turns the mouse pointer green when hovering over the GUI element.

MouseRestricted
This class is set on an element when it is not clickable, or blocked from interaction.
By default, this turns the mouse pointer red when hovering over the GUI element.

MouseMove
When an element is movable, or draggable, this class turns the mouse pointer into
arrows when hovering over that element.

MouseCrosshair
When an element, or area, has this class, the mouse pointer turns into a crosshair
for aiming. This is perfect for graphic applications, where the user needs a precise
tool to draw lines and other geometric shapes.

MouseCursor
Textareas, text input fields and content editable areas should be given this class to
indicate that they are editable. By default, all textarea and input[type=text|number]
fields are given this class.

Absolutely positioned elements

Sometimes, it is necessary to absolutely position elements to make them fully
scalable. This must be done with more than an afterthought, as different themes
may have different margins sizes and line heights etc. But if you need to absolutely
position elements, you may use inline styling. It is strongly urged to limit the use
of such styling to the following keywords: top, left, bottom, right, width,
height. Example:

<div class="ContentFull">
<div id="Toolbar" class="BorderRight" style="width: 30px; left: 0; top:

0; bottom: 0">
</div>
<div id="Canvas" style="left: 30px; right: 0; top: 0; bottom: 0">
</div>

</div>

66/96

You have been warned! Absolutely positioned GUIs often break when changing a
theme, and you may end up getting support tickets that you could live without.

Pulldown menus
No application is complete without a functional menu. Well, even if you are against
menus, they are an easy way to add access to functionality in a GUI application with
the bare minimum of work.

In Friend, every View window or Screen has a method to add menu entries. Below is
an example using a View window.

// Add a new view window
var v = new View({ title: "Test view", width: 400, height: 400 });

// Create a menu
var myMenu = [

{
name: 'File',
items: [

{
name: 'Quit',
command: 'quit'

}
]

},
{

name: 'Second menu',
items: [

{
name: 'Say hello!',
command: 'say_hello'

}
]

}
];

// Add the menu to the view window
v.setMenuItems(myMenu);

So a Friend menu consists of a nested array of objects. Each object has a name.
Each object has either an items array or a command string. The items array will
create sub menus. You can have several sub menus. The command string sends a
message to the Application.receiveMessage function, where you can recognize it by
testing the msg.command value in the message object.

A matter of scope

In addition to having a command string, there’s the question of where the command
is sent. By default, all menu commands are sent to the root Application object in
a Friend application. Here it is intercepted by the Application.receiveMessage(msg)
function. But this is quite often not what you would want.

67/96

A menu is set, either on a View window or on a Screen. Both have their own scopes,
running code in an iframe nested in each one. The root Application object has got
an invisible iframe running its code in a sandboxed environment.

To pass a menu command to the scope of its own iframe, you need the scope
parameter set to local. Like so:

{
name: "Do some stuff",
command: "do_stuff",
scope: "local"

}

This will make sure that the command, “do_stuff”, is sent to the scope of the View
window or the Screen that it belongs to.

Tabs
In Friend, an HTML template adhering to the Javascript specification of tabs can be
activated to an interactive tabbed interface using the following code:

HTML5:

<div id="MyTabs">
<div class="Tab IconSmall fa-alert">Say hello</div>
<div class="Tab IconSmall fa-minus">Less text</div>
<div class="Page">

<p>This is just a message to say hello.</p>
</div>
<div class="Page">

<p>Told you it was less text.</p>
</div>

</div>

It is important to note that IconSmall and fa-* classes are added to the tabs. These
are optional, but add icons in front of the tab labels. This can beautify the tabs, and
doing it this way is strongly encouraged. To standardize, Friend utilizes Font
Awesome for css compatible icons.

Javascript:

InitTabs(ge('MyTabs'));

The code above initializes the HTML5 template into becoming interactive and
properly laid out. It is important to have loaded the HTML5 code into an element
that is in the same scope that the Javascript is running in. Often times, you can
embed the Javascript in your HTML5 template. Another way to accomplish the same
thing is to load it using an external script reference in the HTML5 template:

<script src="Progdir:folder/myscript.js"></script>

68/96

Progdir, as explained earlier, is a relative path to your application directory on your
file system.

Tree views
Tree views are useful when you want to hierarchically display lists that represent for
example a data structure or a document. Tree view objects generate a DOM node
that can be attached to an HTML5 template:

HTML5 template:

<p>Look at my fine tree view!</p>
<div id="WhereMyTreeViewIs">
</div>

Javascript:

var list = ["Mercedes", "Volkswagen", "BMW", "Porché", "Saab", "Bugatti"];
var tvi = Treeview(list, "brands", { alphabetical: true });
tvi.id = "Car_brands";
if(ge("WhereMyTreeViewIs"))
{

ge("WhereMyTreeViewIs").appendChild(tvi);
}

Directory views
Directory views are useful when you want to represent a directory or path on a file
system in your graphical user interface. Directory views can be used on parent
elements or directly on view windows or screens. Our first example below shows the
use of a directory view on a View object.

// Create a new view window
var v = new View({

title: 'View test with directory view',
width: 640,
height: 480

});

// Set up the directory view on the view window
var w = new DirectoryView(v);

Programming GUIs using the FUI framework
More soon!

Packaging and submitting to the repository
Once you have created your application, you may want to share it. To do this, you
should create a Friend Package, using the .fpkg format. To make this simple, you
can use Friend Create to generate this package for you.

69/96

The first thing you have to do is to collect all your project files in a Friend disk. You
can do this by compressing your project directory and placing the resulting .zip file
on your Friend disk (drag & drop from your desktop or use the “Upload file” tool).

Once your project is unzipped by using the “Decompress file(s)” menu item in the
Actions menu, you can create a Friend Create project. Start Friend Create and chose
“Project -> Project properties”. After having described your project, save it in your
project directory. Then, after having saved it, add all of the files related to your
project with the Project properties dialog.

Once saved (again), you can test your project with the “Project -> Run project”
menu item. If it runs, go ahead and select “Project -> Generate package”. If all went
well, you will get an affirmative alert window. You will now have a .fpkg file in your
project directory. Drag this file icon onto System:Software/ in the System: disk. This
will install the package for the administrators of the server to validate and
authenticate. After this process is completed, your application or game will appear
in the Software Catalog.

70/96

The Tree engine
This part of the documentation will explain in details the design and possibilities of
the Javascript Tree engine implemented in Friend. The engine is based on a
structure of trees and objects, that could also be called “items” or “nodes”. The
intention of the design is to simplify building complex structures by applying a
method of abstracting recursive hierarchies and fractally nested objects.

The tree structure
Items are connected to any number of items above them, and to only one below
them. Like a tree or neuron.

A recursive tree structure is easily visualized

The items
Each “item” is a JavaScript object – an isolated piece of code that communicates
with its neighbour and parent, but also sends messages to any other item that is
able to receive them. Data can enter and leave any item from any connection via
processes; “filters” that process data.

71/96

Flow of data between items

A Tree item is a JavaScript object with five functions

function nameOfObject(ftree, name, flags)
● constructor
● ftree: the ftree engine
● name: the name of the object
● flags: list of parameters

function renderUp(flags)
● “flags” is a JavaScript object containing things like the context, the x-, y-, z-

coordinates, a zoom factor, global rotation etc.
● the function is called in the screen refresh process, following the hierarchy of

the tree
● “flags” come from the parent items in the hierarchy, and those can have a

modified context on the way up (like manipulating an object for game with a
“manipulator” item. It will manipulate all the items above it by modifying the
x and y coordinates of its child items, rendering at random, and then reset all
of the parameters for the rest of the rendering on the way back up in the
message flow.

● context will point (in later versions) to a “renderer” object that will adapt to
the desired output (f.ex. browser, VR or 3D), or direct to a machine on other
platforms.

● When having completed its render process, the render function calls the
rendering function on all of its sub items, continuing upwards in the tree, with
the flags it may have modified (like “manipulator” the this context)

function renderDown(flags)

72/96

After all of the “renderUp” functions have been processed for all of the sub items on
an item, the “renderDown” function of the parent item is called.
The Tree is then explored backwards, respecting the hierarchy in reverse order.
The role of the “renderDown” function is to restore the state of the items as they
were on the way up. For example, the screen manipulator item should restore the
context to how it was when its “processUp” function was called, so that the
manipulation “effect” stays limited to its own children and do not affect the whole
tree.

function processUp(delay, zoom, flags)
The item's internal process. See later in this document.

function processDown(delay zoom, flags)
The item's internal process. See later in this document.

The processes
Each item can “host” a number of “processes” that handle various tasks, like
moving the object for a game, handling the a mouse click for a button in the Friend
Workspace etc.

The structure of a process allows for a safe and easy to use expandability: a process
consists of a pile of sub processes, each sub process having an UP function and a
DOWN function.

A process is a Javascript object, with 3 functions

function processName(ftree, name, flags)
● the constructor

73/96

● ftree: the Tree engine
● name: the name of the object
● flags: flags containing data for creation

function processUp(delay, zoom, flags)
● delay: number of milliseconds since the last frame or call
● zoom: rendering zoom factor (this parameter will be transferred into the

“flags” object)
● flags

Processes are attached to items. During the update procedure, the item chooses
the properties to copy in the “flags” object, for example “x”, “y”, “z” and “image”
for an animated sprite. It calls the lowest process with the “flags” object..
If an “animation” process has been added to the item, it will pick the “image” value
on the way. It will then process it (go to the next image of the animation), store it in
the “flags” object, replacing the previous image and set the “refresh” boolean value
to true in the flags.
The modified “flags” object is then passed to the next process, going up in the pile.
Each process works on any properties it can find. If it does not find any properties, it
can create them, but it is up to the processes above, and finally the item below, to
accept these properties. In the worst case, a process will do nothing but eat a little
processor time.

The procedure

● the item chooses the original data to put in the “flags”
● the item calls the lowest process in the tree
● each process picks/computes/creates the properties in the “flags” object
● each process stores the modified result in the “flags” object, and sets its

“refresh” boolean value to true
● each process calls the next process at the end of its process cycle

Once the top of the pile is reached

● the “processDown” function of the top process is called with the “flags”
object. In fact, for the last process, the Down function is called immediately
after the Up function

● the “processDown” function’s role is to verify the integrity of the data coming
down, as it might have been modified erroneously by a process above. This
phase of the “validation”on the way down is crucial to the stability of the
engine and its expandability; any modification will be validated before being
used. Every version of an item will be compatible (if properly designed) with
any other, new flags will simply be ignored

● at the end of the “processDown” function, the process calls the next down
process which will perform the same operation until the item is reached

74/96

Once the item is reached

● the “flags” object can contain anything from any process
● the item “picks” the properties it wants to use, and only them
● the item updates itself eventually if the data is interesting and if the item

needs a refresh of the display

function processDown(delaym zoom, flags)
● delay: number of milliseconds since the last frame or call
● zoom: rendering zoom factor (will be deprecated)
● flags

Rendering
Processes have no access to the screen, as this structure is a hidden resource.

The item “renderUp” and “renderDown” functions have access to the drawing
context, transmitted in the “flags” object.
This “context” will (at a later date) point to a “renderer” class that will adapt the
display to the machine of the user, and the current mode (e.g. VR, 3D, browser). In
any way, every item will work on every platform where a renderer has been
created.

Each item will also have the possibility of rendering itself in a symbolic way,
showing in a graphical way what it is doing inside of it, thus enabling the creation of
a graphical debugger showing the items in real time (a tree diagram).

At work
An Item can be called:

● At every update (for games)
● When a specific event occurs, including mouse, keyboard etc
● When something happens, like a collision in a game, or a click on a button

It is important to know that an item which has not registered itself for constant
updates will idle, avoiding the consumption of valuable processor time (just a tiny
bit), and will only be called when the event it registered for occurs.

Applications
This engine will be the base of several applications in Friend in the future. It will,
over time, replace the HTML5 based Workspace so that this can be retargeted to
display architectures using any display technology.

Tree Game engine
By designing game objects, like a “Sprite”, “Layer”, “MultiPlayer”, “ProgressBar”
and processes like “MoveLine”, “Animations”, “Screen Manipulator” etc, we have all
the necessary tools to create the Tree Game engine.

75/96

Panzers! is a multiplayer online demo game showing the possibilities of the engine.
See the examples below:

Main screen of Panzers!

In-game

76/96

The tree structure of the game

The game objects

● Sprite

77/96

● Background
● Text
● Dialogs and interface elements
● Complex items like Shotgun, Trap, Bonuses
● Sound
● Music player
● etc

The game processes

● Movements (tank, line, platform, physics engine)
● The multiplayer game objects allow for a very easy handling of users
● Animations
● Effects
● etc

In-game screen sharing

By transmitting the exact copy of the game tree firstly, then every modification in
its structure later, the modification of each element in the tree (very simply handled
by adding a “treeEmitter” sub process for each element), could achieve game
screen sharing with very little data transmitted. For example, if an item moves, only
its new X and Y coordinates are transmitted over a network (not pixel graphics or
other client related information).
The receiver will automatically receive these modifications and the Tree engine will
update them automatically. A renderer on the distant Tree (over the network) will
display the exact same image as in the original game instance. Game sharing will
be achieved in a couple of programmatic instructions.

Programming the Friend Core
The Friend Core is the Friend operating system kernel. It is designed as a
cooperative system program that can extract functionality from an underlying
operating system and expose it using Friend’s APIs and structures. This allows you
to work uniformly on top of any supported operating system.

When writing new components for Friend Core, it is advised to employ a scripting
language like PHP. This allows you to write safe and solid code without having to
worry about system crashes and memory bugs. Additionally, you get the added
benefit of not being tied to changing system architectures on the underlying
operating system.

Friend Core has a vast API that is accessible using HTTP and websockets. Because
of this, you may want to use a different programming language that is more to your

78/96

liking. But if you do choose to use PHP, there is a whole runtime environment
available with classes and helper functions to get you started.

The first part of this documentation will explore the HTTP API of Friend Core. The
second part will go into programming using PHP. Finally, there will be a chapter for
C programmers who would like to examine Friend Core’s C based libraries.

Getting started with Friend Core and HTTP/S
To get started, we will be utilizing CURL to access the Friend Core. This way, you will
be able to learn incrementally using a simple tool that is available on any operating
system. In the following examples, we are using Linux with CURL.

To log into Friend Core, you first need a username and password. It is quite easy to
log into a standard Friend server using the following query:

curl http : //friendcore.local:6502/system.library/login/ -F "username=xxxxxxx" -
F "password=xxxxxxx" -F "deviceid=myid"

Remember to make sure your password is pre-hashed. If not, Friend Core won’t be
able to interpret your password. Passwords are hashed like this:

PASSWORD = "HASHED" + sha256("mypassword")

The device id can be set to anything. It is a way for you, as a user, to recognize
which unit is connected and logged in to your user account. A device id may f.ex.
be: “MyPHPScript”.
It is important that you use curl in POST mode. Friend Core does not support the
GET method for authenticating. If your username and password is correct, you will
get a reply like this, in JSON:

{
"result":"0",
"sessionid":"9ba8866ba866da295a861913f9d2f7c6de1e28a1",
"userid":"1",
"fullname":"Hogne Titlestad",
"loginid":"9ba8866ba866da295a861913f9d2f7c6de1e28a1"

}

You will now be able to use the rest of the API by adding your session id to other
calls.

If you did not manage to login because of a bad username and/or password, you will
get this message:

{
"result":"-1",
"response":"username and/or password not found!"

}

79/96

Friend Core has several libraries and modules that all are available using HTTP/S
calls using Curl (or another web crawler). Please revert to the Modules and Libraries
chapters for an overview of all the available commands that are available for these.
But to show you how to use these, take a look below for some examples:

A library call using system.library:

curl http : //friendcore.local:6502/system.library/help \
-F "sessionid=9ba8866ba866da295a861913f9d2f7c6de1e28a1"

Remember to add options to the different library calls in adherence with the library
documentation in the Libraries chapter.

A module call using the system.module:

curl http : //friendcore.local:6502/system.library/module/ \
-F "module=system" -F "args={\"setting\":\"settingtest\"}" \
-F "command=setsetting" \
-F "sessionid=9ba8866ba866da295a861913f9d2f7c6de1e28a1"

For modules, arguments are added in a JSON string with the args variable. So make
sure you preprocess your arguments in the JSON format to be compatible with the
Friend Core module format. Each module command is given as the command
argument. Again, all queries to Friend Core need a sessionid string for
authentication.

NB: If you are using HTTPS on localhost with curl, remember the --insecure
command line option. It will tell curl to skip verifying your self signed certificate.

DOS Structures
The Friend DOS layer, Dormant, operates on file information structures in the JSON
format. These structures are given when doing directory views or getting file
information through “info” DOS calls. The JSON structures follow a specification with
possible attributes.

Each file type is accessible in the Type attribute. There is also an extra MetaType
attribute for determining what type of content the file has. For example, a meta
type may be “News item”. In that case, the file consists of many blocks of data that
have been combined into one binary file. Such files can be read using the InfoGet
and InfoSet methods (more on them elsewhere in the documentation, under DOS
commands).

Each directory or file may have an ID attribute. This is optional, but may expose a
primary key or identifiable key to a Friend application.

80/96

Path has the file system path relative to the volume name. Volume names are
omitted from the paths.

DateCreated and DateModified are represented in the following format: Y-m-d
H:i:s.

Filesize contains the size of the file in bytes. Directories have no file size (=0).

Permissions has the following format:

{
User: "arwed",
Group: "arwed",
Others: "arwed"

}

Friend has a permission system inspired from Tripos and Amiga OS. Each letter is
explained here:

A = Archive (the file is being used, stay away)
R = Readable
W = Writable
E = Executable
D = Deletable

Missing permissions are written as such, where write and delete are missing: “ar-e-”

Shared tells how the file is shared to others. The default is “Private”. If the file is
shared, it may be “Public”. A SharedLink is accessible to users of the right
privilege. Public files have public shared links that can be used by anyone.

Example of a file structure
A plain DOS file structure has the following format:

{
DateCreated:"2017-04-06 09:30:33"
DateModified:"2017-04-06 09:30:33"
Filename:"3D-Hartwig-chess-set-master.zip"
Filesize:"12038549"
ID:"11914"
MetaType:"File"
Path:"3D-Hartwig-chess-set-master.zip"
Permissions:"{‘User’:’arwed’,’Group’:’-----’,’Others’:’-----’}”,
Shared:"Private"
SharedLink:""
ExternUrl: “Home:Somewhere/3D-Hartwig-chess-set-master.zip”,
Owner: 35,
Type:"File"

}

A couple of attributes to point out. As of v1.2.4, Friend got a ShareDrive filesystem.
This allows users to share files with work groups or other users. A file that have

81/96

been shared will produce ExternUrl and Owner as file attributes where ExternUrl
points to where on the user’s source drive the file is located, and which user ID the
owner has.

Example of a directory structure
Directory structures are not unlike File structures. They have the following format:

{
DateCreated:"2017-01-23 15:39:06"
DateModified:"2017-01-23 15:39:06"
Filename:"3D-Hartwig-chess-set-master"
Filesize:"0"
ID:"725"
MetaType:"Directory"
Path:"3D-Hartwig-chess-set-master/"
Permissions:"{‘User’:’arwed’,’Group’:’-----’,’Others’:’-----’}”,
Shared:""
SharedLink:""
Type:"Directory"

}

Friend Core development
This chapter describe how developer can create additional parts for the system:

Authentication modules
It is allowed for developers to write their own authentication module, which are
responsible for checking user credentials,
Currenty with Friend Core we deliver:
fcdb.authmod - Friend Core DataBase module which is using database to store user
credentials and static login site which is returned when /loginprompt call is send.
php.authmod - is using default fcdb.authmod to manage user credentials but they
are checked in external system which is handled via php.

Configuration:
To change default authentication module go to cfg.ini and add (or change) lines:

[LoginModules]
use=<EXTERNAL>.authmod
modules=<EXTERNAL SETTINGS>

Login Page
When default module is selected then default html site is used to fill credentials
(resources/webclient/templates/login_prompt.html) . This site is sending to FC call

82/96

with username and password variables, Second one is hashed by using sha256 to
prevent user for sending his password through network.
When you will write your own module and you want to create your own page you
must handle getting page call in php/login.php .
Remember FriendCore require parameters send via post: username, password,
deviceid .

To create new module, you must first create directory in authmods folder:
Friend OS/authmods/<My new module>
add it to makefile in authmods directory:
LIB_DIR = fcdb php <My new module>
And if you don’t want to write your new makefile you can copy it from fcdb folder
and change (you will see there how calls like setup, compile, etc. are handled).
Now create your .c file add it to makefile and fill all required functions. If your code
will not contain function from authmodule structure default call will be used (fcdb).

Below skeleton of authentication module

typedef struct AuthMod
{

MinNode node; // list of modules
char *am_Name; // logini module name
FULONG am_Version; // version information
void *am_Handle;

void *sb;
int (*libInit)(struct AuthMod *l , void *);
void (*libClose)(struct AuthMod *l);
FULONG (*GetVersion)(void);
FULONG (*GetRevision)(void);

// check if user exist in database, by name
FBOOL (*UserExistByName)(struct AuthMod *l, Http *r, const char *name);
// authenticate user, if user is authenticated to login, it returns User structure
UserSession *(*Authenticate)(struct AuthMod *l, Http *r, struct UserSession *loguser,

char *name, char *pass, char *devname, char *sessionId, FULONG *blockTime);
// check password
FBOOL (*CheckPassword)(struct AuthMod *l, Http *r, User *usr, char *pass, FULONG

*blockTime);
// update password
int (*UpdatePassword)(struct AuthMod *l, Http *r, User *usr, char *pass);
// logout user
void (*Logout)(struct AuthMod *l, Http *r, char *s);
// check if user serssion is still valid, return filled user structure
UserSession *(*IsSessionValid)(struct AuthMod *l, Http *r, const char *sessionId);
// set attribute
void (*SetAttribute)(struct AuthMod *l, Http *r, struct User *u, const char *param,

void *val);
// update user in database
void (*UserUpdate)(struct AuthMod *l, Http *r, User *usr);
// test textual application user permission
int (*UserAppPermission)(struct AuthMod *l, Http *r, int userId, int applicationId,

const char *permission);

void *SpecialData;
int am_BlockAccountTimeout;
int am_BlockAccountAttempts;

} AuthMod;

83/96

Now we will go through all fields and functions.
node - this structure is used by FriendCore to handle all modules in list,
am_Version - version of module,
am_Handle - poitner to .so handler,
sb - pointer to SystemBase. Remember to store this field in libInit function. It will
allow you to use system.library functions.
libInit - function which is called always on start. You can initialize all your “global”
values there. First parameter in this function is used to pass your module, in second
pointer to SystemBase is passed. To hold your your own data you can use
SpecialData pointer
libClose - is used to release all specific resources allocated in libInit function.
GetVersion and GetRevision - should return as name says version and revision.
UserExistByName - function must return TRUE when user exist in our system or
FALSE when it doesn’t. Function takes parameters:
l - pointer to our authentication module,
r - pointer to http request from which we can take additional parameter,
name - pointer to char table which contain user name.
Authenticate - function return must return UserSession structure when login success
or NULL when it fail. Function provide in parameters pointer to module, pointer to
http request and:
logusr - pointer to user session found in FriendCore memory. FriendCore recognize
sessions by sessionID field which can contain 256 chars. Pointer to this session
should be updated and returned if it’s not equal to NULL.
name - user name
pass - password
devname - device name
sessionId - sessionid if provided
blockTime - pointer where time till account will be blocked in unix time(seconds
from 1970) must be stored.
CheckPassword - function return TRUE when password is ok, otherwise FALSE must
be returned. Function provide in parameters pointer to module, pointer to http
request and:
usr - pointer to user structure which contain fe. password
pass - password parameter
blockedTime - pointer where time till account will be blocked in unix time(seconds
from 1970) must be stored.
UpdatePassword - function return 0 when password was updated otherwise error
number should be returned. Function provide in parameters pointer to module,
pointer to http request and:
usr - pointer to user structure which contain fe. Password
pass - password
Logout - function do not return any value and provide parameters:
Pointer to module, pointner to http request and sessionid.
IsSessionValid - return pointer to user session if it’s valid, otherwise NULL. Function
provide pointer to module, pointer to http request and sessionid which should be
used to validate session.
SetAttribute - function is used to store information about users. Function provide
pointer to module, pointer to http request, pointer to user and:
param - name of parameter,

84/96

val - name of value.
UserUpdate - function is used to update information which are available in User
structure. Function do not return anything but provide parameters like pointer to
module, pointer to http request and pointer to user.
UserAppPermission - not used atm
SpecialData - pointer to structure where developer will hold internal module data
am_BlockAccountTimeout - variable used to store information about time on which
account is blocked when login fail.
am_BlockAccountAttempts - number of bad account attempts on which account is
blocked

85/96

Using DOS drivers

The Website DOS driver
The Website DOS driver allows you to connect to an external Web application
and abstract it as a disk volume. This way, you can distribute your application by
allowing users to connect to it through the DOS driver.

The Website DOS driver supports not only directory listings, but also virtual disk
libraries. This allows you to expose your application’s server API as a Friend library.
This way, your javascript application can call the API using library calls to access
more functionality and data from the remote source.

86/96

When mounting a website drive, you will get a simple directory listing. You will get
either an index.html file (if the website you are abstracting has such a file), or you
will get an index.jsx file (if the website has made available such a file). The index.jsx
file takes precedent, and if it’s there, the index.html file will be hidden. The
Libraries/ directory will list your virtual libraries.

For our example here, we are expecting you to use PHP for developing the external
service for the DOS driver. In fact, when using the Website DOS driver, you do not
really have to develop the logic of the DOS driver itself - it is already there. All you
need to do is to handle the calls that come in from Friend Core on the remote
server.

We have added these files to our remote server, hosted on Apache 2:

● index.jsx
● index.php
● templates/

○ main.html

These three files include everything we need for the moment. The .jsx file is the
executable javascript that will be loaded by Friend Workspace. It will open a new
window and display a template. The code is here:

Application.run = function(msg)
{

var v = new View({
title: 'My sample Website app',
width: 500,
height: 400

});

87/96

v.onClose = function()
{

Application.quit();
}

var f = new File('Progdir:Libraries/templates.library');
f.onCall = function(e, d)
{

if(e == 'ok') v.setContent(d);
}
f.call('template', { templateFile: 'main' });

}

The index.php file includes the logic to receive the library call and to display the
library. This is how the code looks:

<?php

// Check commands from Friend Core
if(isset($_REQUEST['command']))
{

switch($_REQUEST['command'])
{

// Library listing?
case 'libraries':

$o = new stdClass();
$o->Filename = 'templates.library';
$o->Filesize = '16b';
$o->DateModified = date('Y-m-d H:i:s');
$o->DateCreated = $o->DateModified;
$o->IconClass = 'TypeLibrary';
$o->Permissions = '-r-e-';
// Return one file, a json encoded array of a file object
die('ok<!--separate-->' . json_encode(array($o)));
break;

// A library call?
case 'call':

if(!isset($_REQUEST['path']))
die('fail<!--separate-->{"response":"no library

specified"}');
$library = end(explode('/', $_REQUEST['path']));
// This library?
if($library == 'templates.library')
{

if(!isset($_REQUEST['args']['query']))
die('fail<!--separate-->{"response":"no

library call specified"}');
switch($_REQUEST['args']['query'])
{

// We want a template
case 'template':

// No traversal
$tf = isset($_REQUEST['args'][

'templateFile']) ? $_REQUEST['args']['templateFile'] : '';
if(!$tf || strstr($tf, '..'))

die('fail');
if(file_exists('templates/' . $tf .

'.html'))
{

88/96

die('ok<!--separate-->' .
file_get_contents('templates/' . $tf . '.html'));

}
break;

}
}
break;

// Unknown call
default:

die('fail');
}

}

// Nothing was triggered...
die('fail');

?>

The templates/ directory holds our main.html template file, which is a simple
template file for our GUI. It looks like this:

<div class="ContentFull Padding">
<p>Hello world!</p>
<hr/>
<button type="button" onclick="Application.quit()">

Quit
</button>

</div>

NB: as you can see in the template, the Quit button has an onclick action that
triggers Application.quit(). This function is built into every Friend GUI template,
together with a bare minimum of functions. Read more in the section for the
Application object.

89/96

When the index.jsx file is run, this is the resulting application:

You can keep adding calls to your library, and you can consider adding more
libraries still. A Friend application hosted on a Website DOS driver can use all the
same functionalities, functions, classes and Friend features as any other Friend
application. This is because the templates in the application get access to the
Friend Workspace API automatically.

The Server DOS driver
If you are an administrator, you can use the Server DOS driver to access a directory
on your Linux or Windows server. By entering in a server path, you will get access
to all the files and subdirectories contained within once you mount the volume in
Friend.

The Server DOS driver is ideal when you want to use your existing development
environment through SFTP to your Linux server. Every time you save a file, it will be
updated inside the Friend Workspace, allowing you to access it without having to
worry about cache.

90/96

Terminology (alphabetized)

The Friend OS has a plethora of terms and expressions throughout this
documentation, and indeed throughout the OS and GUI’s themselves. To give a bit
of insight, we have compiled a list of important terms and / or frequently occurring
words, with an explanation below.

Alert() -

Amiga OS - The operating system created by Commodore for the Amiga
computers. Was based on Motorola 68k processors and custom chips. One of the
first pre-emptive multitasking operating systems.

Amiga DOS - The component of Amiga OS that was derived from Tripos.

API - Application Programming Interface

Application - See also Modules and Libraries.

Application category -

Application message, or msg -

Application object, root Application object - The Application object is generated
when you are running a Friend application. See also the Workspace object, View
object, and Screen object).

Application Specific Event -

AREXX, REXX - Programming language for controlling applications. In Friend, our
equivalent is called Dormant.

ASCII, UTF-8 - Encoded text data.

Authentication -

Callback, callback function - See also Messaging and
Event handler.

Certificate - A document used for authentication. For example, an SSL certificate.

Class -

Client mode - Session client can register client-accept, decline, and close events.
See also SAS class, Host mode and Events.

CLI - Command Line Interface - An interface that allows you to use the DOS.

91/96

CLI argument(s) - Strings or parameters typed following the shell command.
These arguments are passed to the Friend Core to elaborate on, qualify, or modify
the command execution.

Configuration file, Config.conf - see Project configuration file

console.log() -

Constructor -

Cookie -

CSS frameworks, classes -

CURL -

Database object - See PHP database object.

Device ID -

Disk Drive - shortened to ‘disk’ or ‘drive’. Early computer storage devices, as well
as current HDDs (Hard disk drives) consist of a magnetized circular metal surface
(disk) that is rotated at high speeds by an internal (drive) motor. SSD’s or Solid
State (disks or drives), by contrast, have no internal motor or moving parts. Solid-
state refers to integrated circuit (silicon only) ICs or computer memory chips.
Today, even when persistent computer ‘storage’ is offered over the cloud, as a
‘virtual’ storage device, it is still referred to with the legacy name of ‘Disk’ or
‘Drive’. When you hear that, just think ‘storage’. And of course, there are many
flavors...

DOM - Document Object Model

DOM element -

DOS - Disk Operating System - An OS that is managed using commands and
expressions.

Dormant - Our interface to leverage Friend DOS to and between Friend applications
and Friend Core, the Friend server/kernel.

Encryption - data may be encrypted - or - scrambled according to algorithmic rules
so that it may remain privy to people who possess the encryption key only.

Events -

Event handler - A function that handles the processing of or response to system,
application, or user events.

92/96

File class -

File dialog -

File object, fileinfo object -

Filesystem - A data volume that is structured so that it can be read by an
operating system.

Filesystem driver - A driver that reads a data volume and interprets its file system
for an operating system.

Friend binary libraries -

Friend Core - The Friend server/kernel. This is the brain of Friend.

Friend Shell - This is a Command Line Interface that allows a user to access the
Friend Core using commands and arguments.

Friend Script - Friend DOS commands and arguments sequenced in a file.

Friend DOS - Friend Disk Operating System.

Friend Create - Friend’s integrated development environment, or IDE.

Friend Chat - Friend’s instant messaging and video conferencing application.

Friend Workspace - Friend’s dynamic desktop environment.

Friend server - another name for Friend Core.

GUI - Graphical User Interface

GUI objects -

Handler - see Event handler.

Helper functions -

Home: volume - A common name for the disk volume designated for a user’s main
files.

Host mode - Session host can register user-add, remove, and list events. See
also SAS class, Client mode and Events.

HTML security model -

HTML5 templates -

93/96

I18n - i18n() string language translation function. See
also Localization.

iFrame -

JS object, JSON object - See also JSON.

JSON - JavaScript Object Notation, a standard string format to represent data
objects. See also JS object.

Kernel - The core of an operating system - where resources, users and other
important data is managed and processed.

Library - A collection of function calls contained in or abstracted through one file.
See also Modules and Applications.

Library class -

Localhost -

Localization, Locale/ - An Application’s Locale/ directory holds language support
files that define system and application keywords and message strings, and their
language-specific (Norwegian, English, German, etc.) string replacements. See also
i18n() conversion function.

Message, or msg -

Messaging - See also Callback.

Methods - See also objects and properties.

Mime Types -

Mountpoint - The unit that represents a disk volume.

Modes - See Host mode and Client mode.

Modules - Collections of functions that are running outside of the Friend Core
memory space. See also Libraries and Applications.

Module Class -

MySQL / database - A program that holds vast amounts of data and from where
data can be retrieved and stored with great speed and efficiency.

Network Event -

Node, node ID -

94/96

Objects - See also properties and methods.

OS - Operating system

Parameters (command or function) -

File and directory permissions, privileges - Specified for Owner, Group, and
Others. Rules, controls, or protections for user and group access to specific files
and directories. Access types include Read, Write, Execute, and Delete.

PHP -

PHP database object -

Process, Task - Programs that run in a space managed by the operating system

Progdir:, or Program directory -

Project -

Project configuration file - config.conf

Properties - See also objects and methods.

Python -

Responsive UI design -

returnCode, returnValue, returnData -

SAML - Security Assertion Markup Language

Sandbox, sandboxed application containers -

Scope (of namespace?) - Application, Screen or View scope.

Screen class - See also View class.

Screen object - See also View object.

Screen window, or Screen - See also View.

Session -

Session ID -

Session host, participants - See also SAS, SAS class. Host mode, Client
mode.

95/96

Shared Application Session (SAS) -

SAS class -

Shell, shell process - A textual user interface to a functional system structure, like
a desktop or a CLI.

System: volume - The virtual disk volume that represents the Friend operating
system in the Friend Workspace.

Template -

Tripos - An ancestor to the Friend OS.

UI - User Interface. One example is GUI (see above). Another is CLI (command Line
Interface - or typing on a keyboard). A third is Voice UI, such as speech-to-text-to-
speech, voice command input, and audio response or output. A fourth, still in early-
early alpha, is direct brain-to-computer.

View class - See also Screen class.

View object - See also Screen object.

View window, or View - See also Screen.

Volume - A disk unit connected to a disk drive. A Volume contains directories and
files. This is represented as the volume-name, followed by a colon ‘:’, for
example, Work:

Websockets -

Workspace - see Friend Workspace above.

Workspace object - The Workspace object is the main structure representing the
Workspace scope in Javascript. See also the Application object.

Workgroup - A group that users can be a member of that gains them access to
shared resources. Often times, users get access to networked disk volumes by
being a member of such a workgroup.

Xcellent - Friend OS is an Excellent programming environment!

96/96

